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Outline
• Role of computing in high-energy physics experiments

• Typically, use ATLAS as an example

• Recent developments in computing

• Single core → multi-core processors

• Machine learning

• Quantum Computing

• Selected applications to high-energy physics
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Computing in High Energy Physics
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How do we get from information from particles passing through the detectors to 
published physics results?
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Detecting elementary particles
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Reconstruction algorithms map from detector read-out to the particles that 
passed through the detector



The Large Hadron Collider
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600 million collisions a second
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HUGE AMOUNT OF DATA…  
LHC delivered billions of recorded collision events to the LHC experiments 
from proton-proton and proton-lead collisions so far. This translates to many 
100s PB of data recorded at CERN.  

  
 In 2018 alone,  
 50 PB of data  
 are expected!  

 
 
The challenge how to 
process and analyze 
the data and produce 
timely physics results 
was substantial but in 
the end resulted in a 
great success.  
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http://wlcg-public.web.cern.ch/

In 2018 alone, 50 
PB of data were 

expected



Future Challenges
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HEP: Landscape and Frontiers

FNAL Intensity Frontier

>50M LOC

Upgraded experiments planned on all frontiers

Upgrades typically produce even more data



Big Data: Now and in the Future
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Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes

10 Billion of these 

wired, I. Bird, D. Costanzo

https://www.wired.com/2013/04/bigdata/
https://indico.cern.ch/event/466934/contributions/2524828/attachments/1490181/2315978/BigDataChallenges-EPS-Venice-080717.pdf
https://conference.ippp.dur.ac.uk/event/661/contributions/4035/attachments/3409/3726/Durham_16Apr2018.pdf


Moore’s Law
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Number of transistors on integrated circuits doubles every two years

Not expected to continue indefinitely: approaching the size of atoms 

We’ve been relying on this:
amount of computing 

power one can purchase 
increases even with a 

fixed budget



Changing Technologies

• Recently, trend has been 
towards increasing number of 
processors rather than 
increasing speed of each 
individual processor

• Reflects that we’re hitting 
limits in what is possible in 
terms of speed

• Take a typical ATLAS event 
and look at the speed of an 
individual processor on some 
of the modern machines

• Decreasing on newer 
machines
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S&C week. The final talk 

➢ Moore law -> increase of transistor density 
with time 

➢ Clock speed stopped at ~3GHz
➢ Limited by power (Wm-2 limit)
➢ HEP software designed to execute one 

Instruction set at a time
➢ Improvements from SW vectorisation

8

Technology evolution. Needs to upgrade

➢ Multiple processors per chip
○ Multithreaded applications
○ Memory shared by multiple threads
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Accelerators
• GPU = Graphics processing unit

• FPGA = Field programmable gate array

• Inexpensive, large processing power, but limited 
instruction set

• More recently: new computer architectures 
largely focussed on machine learning have started 
to appear, e.g. google’s TPU = tensor processing 
unit
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A new challenger appears: Google TPU

VI S&C challenges in EHEP 35

TPU



Computing is becoming more complex
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Shifting landscape for 
end-to-end computing

5

The Good Old Days

The Brave 
New World

Courtesy Graeme Stewart, CERN

Quantum 
Computing?



Parallelism
• One technique to exploit these new 

hardware devices is moving away 
from the idea of processing each 
event sequentially

• Multiple events in parallel (each in 
a separate process)

• Divide an individual events into 
separate threads

• This is difficult to achieve

• Different threads and processes 
need to operate independently 
without impacting each other

• How to share data between 
processes?
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Example: Track Reconstruction Algorithms 
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Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

ATLAS-CONF-2010-072

Space point formation

Seed finding

Track finding

Ambiguity Solving

TRT Extension

• Reconstructing the passages of charged 
particles through the detector takes the 
largest fraction of CPU time

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-072/


Track Seeding → Cellular Automaton �17

F. Pantaleo

Exploiting parallelism efficiently requires rethinking our algorithms

https://agenda.infn.it/event/14504/attachments/18021/20425/FelicePantaleo_seminario_frascati.pdf


Artificial intelligence/machine learning
• In a nutshell: get the computer to learn without explicit programming

• Machine learning currently used throughout high-energy physics and 
most efforts can be characterised into one of two areas

• Object classification
• Is the reconstructed object the one that I want or is it background ?

• These developments tend to be more general than a signal analysis and 
can be used throughout the physics program

• Event classification
• Are the properties of the reconstructed objects in the event consistent 

with signal or background?

• Various types of machine learning have been used

• Most often boosted decision trees (BDTs), also quite often neural 
networks (NNs)

• AI/ML is an extremely active field both in computer science and in industry
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ML in the Higgs Program
• Higgs coupling to bottom quarks

• b-jet tagging

• Event classification

• Higgs coupling to top quarks

• Object and event classification

• Multinomial BDT
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ML in HEP (and CMS)

VI S&C challenges in EHEP 30

Not new as technology

Many ML frameworks developed 
in HEP over the year (even 
spawned as commercial product)

Few Hundreds BDT running in
Reco/Analysis in CMS



H→bb
• Largest branching ratio (58%), large backgrounds

• Production modes studied VBF,  VH, ttH, (ggF)

• ggF is swamped by large QCD dijet 
production

• Most powerful channel is VH (V=W, Z)

• Three channels

• 0-lepton: Z(νν)H(bb)

• 1-lepton: W(lν)H(b)

• 2-lepton: Z(ll)H(bb)

• Events contain two b-jets and 0-2 leptons
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https://link.springer.com/article/10.1007/JHEP12(2017)024
http://link.springer.com/article/10.1007/JHEP01%282015%29069
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-04/


BDT construction
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Cut-based vs MVA
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DMA = dijet-mass analysis
3.6σ observed

3.5σ expected

MVA = multivariate analysis
4.9σ observed

4.3σ expected
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ttH: Directly probe the coupling of the Higgs 
to top quarks
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The Higgs boson at the LHC.

Higgs boson production
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ggF was the production mode used for the Higgs discovery

But … we can’t see inside the loops
Could contain some new particle other than the top quark
With ttH production, we can observe the top quark directly

Briefly mention two channels: Higgs to diphoton and Higgs to leptons



Channel Definition 
• BDTs are trained using ttH signal 

and background from data control 
regions

• Mostly kinematic variables for jets 
and photons (pT, η, φ) also b-tagging, 
MET

• Define 7 categories over two 
channels
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Results
• Peak in diphoton mass distribution at 125 

GeV

• A fit over the seven categories yields 
36±12 ttH(γγ) events

• 50% sensitivity improvement compared to 
the previous ATLAS publication with the 
same luminosity (largely due to BDT)
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Multinomial BDT for Top-Higgs Interaction
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Quantum computing is not a new idea

“Let the computer itself be built of 
quantum mechanical elements which obey 

quantum mechanical laws.”

RICHARD FEYNMAN (1982)
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April 1983 – Richard Feynman’s Talk at Los Alamos

Title: Los Alamos Experience
Author: Phyllis K Fisher
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Rise of Quantum Computing
• Considerable progress in recent years: rapidly rising number of qubits

• Current state of the art quantum computers fall into two main categories

• Quantum annealers, e.g. D-Wave (2000 qubits)

• Universal quantum computers, e.g. IBM Q (20 quits)

• All quantum computers are not equal: challenges include connectivity and 
noise (error handling)

�28
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IBM 
20Q 

Tokyo 
chip D Wave

https://arxiv.org/pdf/1801.00862.pdf


Qubits and qubits
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11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant

9

qubit and qubit

Quantum Circuits
Series of quantum gates

operating on a set of
quantum states.

Quantum Annealing
Evolution of a quantum

system to a low T Gibbs state
That's D-Wave !

Slide courtesy of J.R. Vlimant



Event generation with quantum computers
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Current MC 
generators neglect the 
correlations between 
particles in the parton 

shower

• Particles are quantum mechanical objects

• Correlations exist between them

• Idea: exploit entanglement between qubits on a quantum computer to improve 
the description of the parton shower

arXiv:1901.08148

https://arxiv.org/abs/1901.08148


Track Reconstruction
• How could quantum computers be used for track 

reconstruction?

• Associative memory: potential for exponential 
storage

• Quantum annealing: algorithmic execution time 
independent of particle multiplicity
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Conclusion

• Brief introduction to the central role of computing in high-energy physics

• Overview of some recent developments in computing

• Challenge and opportunities for high-energy physics

• Illustrated this with a few selected examples

• Parallelisation for track reconstruction

• Machine learning in Higgs analyses

• Quantum computing for event generation and tracking

• But most of all I hope I stimulated your thinking … the world of computing 
is changing rapidly and there are probably many other ways we can benefit

• New ideas are needed!
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Back up
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