超高分解能 冷・超冷中性子検出器 の開発

Collaborators

粟野章吾, 梅本篤宏, 河原宏晃, 多田智美, 武藤直人, 市川豪, 北口雅曉, 広田克也, 清水裕彦, 日野正裕, 三島賢二, 田崎誠司, 有賀智子, 川崎真介, 關 義親

私は何故ここに?

Fundamental Particle Physics Laboratory Graduate School of Science of Nagoya University Division of Particle and Astrophysical Sciences

私は学部4年のとき、原子核乾板にハートを盗まれました。 D2?のとき誘って頂き、ICEPPシンポジウムに初参加、出会いに感謝。 OPERA実験→高感度原子核乳剤を研究室で開発、 →原子核乾板の空間分解能を用いた冷、超冷中性子検出器を開発。

冷、超冷中性子とは?

よび方	超冷中性子	極冷中性子	冷中性子	熱中性子	熱外中性子	高速中性子
速度 [m/s]	7	1 × 10²	6 × 10²	2.2 × 10 ³	4.4 × 10 ⁴	1 × 107
Energy [eV]	3×10 ⁻⁷ 300 neV	5 × 10 ⁻⁵	2 × 10 ⁻³	2.5 × 10 ⁻² 25 meV	1 × 10 ¹	≧5×10⁵ 0.5 MeV
温度[K]	3 × 10 ⁻³	6 × 10 ⁻¹	2.3 × 10 ¹	3 × 10²	1 × 105	6 × 10 ⁹
波長[m]	5 × 10 ⁻⁸ 500 atoms	4 × 10 ⁻⁹	6 × 10 ⁻¹⁰	1.8 × 10 ⁻¹⁰	1 × 10 ⁻¹¹	4 × 10 ⁻¹⁴

BEAM LINE

冷、超冷中性子とは?

よび方	超冷中性子	極冷中性子	冷中性子	熱中性子	熱外中性子	高速中性子
速度 [m/s]	7	1 × 10²	6 × 10²	2.2 × 10 ³	4.4 × 10 ⁴	1 × 107
Energy [eV]	3 × 10 ⁻⁷ 300 neV	5 × 10 ⁻⁵	2 × 10 ⁻³	2.5 × 10 ⁻² 25 meV	1 × 10 ¹	≧5×10⁵ 0.5 MeV
温度[K]	3 × 10 ⁻³	6 × 10 ⁻¹	2.3 × 10 ¹	3 × 10²	1 × 105	6 × 10 ⁹
波長[m]	5 × 10 ⁻⁸ 500 atoms	4 × 10 ⁻⁹	6 × 10 ⁻¹⁰	1.8 × 10 ⁻¹⁰	1×10 ⁻¹¹	4 × 10 ⁻¹⁴

 $\lambda = h/mv$

- 極めて長波長
- ・ Niにより全反射 ミラー上の載せたりボトルに貯蔵可能。
- 電荷を持たない。
- ・ 干渉、重力、寿命、EDM測定等・・・

例:中性子の量子化状態の位置分布

Fig. 3. General scheme of the experiment.

原子核乳剤(超微粒子)を用いれば、位置分解能1~2桁向上 →(数10 nm) 6

Figure 1 Wavefunctions of the quantum states of neutrons in the potential well formed by

微粒子原子核乳剤 製造@名古屋大学 2010~

35nm 結晶

500nm

Mix

AgNO₃ aq

KBr, KI aq

原子核乳剤とは

中性子のおもな検出方法

原子核乾板の場合、荷電粒子に変換

よび方	超冷中性子	極冷中性子	冷中性子	熱中性子	熱外中性子	高速中性子	
速度 [m/s]	7	1 × 10²	6 × 10 ²	2.2 × 10 ³	4.4 × 10 ⁴	1 × 10 ⁷	
Energy [eV]	3×10 ⁻⁷ 300 neV	5 × 10 ⁻⁵	2 × 10 ⁻³	2.5 × 10 ⁻² 25 meV	1 × 10 ¹	≧5×10⁵ 0.5 MeV	
波長[m]	5 × 10 ⁻⁸ 500 atoms	4 × 10 ⁻⁹	6 × 10 ⁻¹⁰	1.8 × 10 ⁻¹⁰	1 × 10 ⁻¹¹	4 × 10 ⁻¹⁴	
おもな 検出法	↓ 中性子を吸収しやすい核種による吸収 水素原子核の散乱						

$$n + {}^{10}B \rightarrow \alpha + {}^{7}Li$$

 $n + {}^{6}Li \rightarrow \alpha + t$

検出原理

核種による中性子吸収

- 中性子吸収断面積 大。
- ・ 吸収後 高dE/dx粒子を放出。

¹⁰B(n, α) σ =3835 barn (v_n=2200m/s), 1.69 × 10⁶ barn (v_n=5m/s)

n + ¹⁰B → α + ⁷Li(基底状態) + 2.79 MeV (6%) α + ⁷Li(第一励起状態)+ 2.31 MeV (94%)

検出器の構造

Sputtered by M.Hino at KURRI

Si板に¹⁰B₄C(50nm)-NiC-C 薄膜をスパッターし、 乳剤を塗布

・¹⁰B₄C(~50 nm) - NiC - C (¹⁰B 濃縮度 ~ 96%)

位置分解能 <100 nm を期待

膜中の¹⁰B による中性子吸収率: (透過率測定より実測) (13±3) % @ 10 m/s (0.14±0.04)% @1000 m/s

微粒子原子核乳剤 塗布•乾燥後

アルミ箔で二重に包み遮光

吸収反応からの飛跡 現像後ベース面(3mmΦピンホールの下流の顕微鏡写真)

15

冷中性子(~1000 m/s 照射@ J-PARC MLF BL05)

飛跡の顕微鏡画像の自動撮像

飛跡の自動認識アルゴリズム1

飛跡の自動認識アルゴリズム2

広範囲高精度視野接続のためのマーク

・ cmを超える距離に渡って100 nmオーダーの精度で接続したい

各視野(100µm)²に座標値が既知の基準点(マーク)を打つ。

 \checkmark

- マークの直径は~1µm以下。
- ・ 歪みにくい場所に打つ→ 基材表面(Si板)に打つ。

電子線露光 + 反応性イオンエッチング

マーク試作(名大 微細加エプラットフォーム)

発散角 / θ ~ ±0.056 mrad

「マーク③」 マニュアル顕微鏡 ¹⁰B₄C 200 nm

200 µm

5.6時間照射

 $\sim 1 \text{ trk}/(3 \,\mu \text{ m})^2$

(視野つなぎ用 マークも見えている。)

スリットパターンが見えている。

飛跡の自動認識と 周期パターンの探索

Rayleigh test: search for periodicity d and relative rotation α Maximize 2/n [$(\Sigma sin(2\pi^*x_i/d))^2 + (\Sigma cos(2\pi^*x_i/d))^2$] where $x_i = x^*cos\alpha + y^*sin\alpha$

マニュアル顕微鏡

「¹⁰B₄C**2μm**」 3時間照射 ~4.5 trk/(3μm)²

スリットパターンがクリアに見えている。

200 µm

「¹⁰B₄C 2 µm」 3時間照射 ~4.5 trk/(3µm)² 自動撮像顕微鏡(PTS2)画像 スパッター膜面付近

110 μ m

飛跡の自動結果と 周期パターンの探索

ベース面での飛跡の位置 (アクセプタンス:tan θ <1.2, 飛跡銀粒子数>4)

Rayleigh test: search for periodicity d and relative rotation α Maximize 2/n [$(\Sigma sin(2\pi^*x_i/d))^2 + (\Sigma cos(2\pi^*x_i/d))^2$] where $x_i = x^*cos\alpha + y^*sin\alpha$

まとめ

- Si基材上に安定な¹⁰B₄C(50nm)-NiC-C層を形成、超微粒子原子核乳剤を塗布した 検出器を開発し、最高で11 nm の分解能を得た。
- 検出効率(実測より外挿): 7 m/s に対し (16±4) %
 2200 m/s に対し(0.067±0.014) %

Eur. Phys. J. C (2018) 78:959

- 視野の広範囲高精度接続用マーク法を開発した。
- ・ μmオーダーの幅の縞模様を認識できることを確認した。

(¹⁰B₄C膜厚200 nm、2 μm)

- ・ 飛跡自動認識できている。(調整->質評価は今後)
- ・ 今後cm程度の領域でマークを利用した高精度~100 nm視野接続をし、解析する。
- ILLの今年最初のサイクルで重力のパターンの照射を予定。

Protasov, Nesvizhevsky による湯川型近距離重力へのconstraint(2004) Potentialとして V= - U₀e^{-z/λ} だけを考えている。 固有状態の存在条件のみから求められたもの。 (U₀ = 2 π G α_{G} m $\rho_{m}\lambda^{2}$)

Figure 3. The constraints on α_G following from the experiment [15] (the solid line) in comparison with that from the measurement of the Casimir and the van der Waals forces [10] (the short dashed lines). The long dashed line shows a limit which can be easily obtained by an improvement of this experiment. The solid horizontal line represents the limit established from the atomic experiment

2. 鏡上に膜(V_F =0, 10 μm厚)を形成する。右側開放、α=10¹⁷, λ=10⁻⁸ m

V=0の膜の厚み毎に見た ³λに対して準位ができる下限のα (α=整数値×10ⁿ についてのみ調べた。)

λ [m]

準位ができる下限のα

х, у

Ζ

分解能:d = ^{0.61 ×λ} _{NA} = 196 nm 実測値: 230 nm(梅本データ)

被写界深度: DOF =
$$\frac{n \times \lambda}{NA^2}$$
 + d× $\frac{n}{NA}$ = 554 nm

冷中性子 @J-PARC MLF BL05

n~1000 m/s

3mmのスリットを通し (3.2±0.2)×10⁶ n /~1300s /3mmの 照射

ビームモニター

原子核乾板検出器

3mmΦ Cd

34

ピンホール

³He 検出器

Cd slit 1cm × 1cm

期待検出効率: (11±3)%

1cm×1cmのCdスリットを通して 原子核乾板に入射した中性子数: 1.25×10⁵ n/cm²

		-		計数	結	₹	-		
0	0	0	Θ	0	0	0	0	0	
0	0	2	1	3	2	0	1	0 8	→ <mark>(1cm)²</mark> 31視野を目視。
0	0	0	3	1	0	2	0	0.	1cm ² の下流の42 視野で 計数
0	0	1	1	3	2	3	0	Ο.	検出した飛跡:
0	0	1	0	4	1	4	6	0	63本 / 42 視野 □ (63±∨63) =(1.5±0.2) 本/視野
0	0	2	1	3	1	0	2	0	入射中性子数: (9.1±0.6) n /視野
0	0	3	3	4	0	0	1	0	→検出効率:(12±2)%
0	0	0	1	1	0	0	0	0	I
0	0	0	0	0	0	0	0	0	(期待: (11±3)%) 44

飛跡を用いた分解能の見積もり

マーク設計

マークを打ったSi板表面 落射光学顕微鏡 低倍率

明確に見えている!!

50 μm 、

乳剤塗布→テスト現像後のマーク 落射光学顕微鏡 低倍率

明確に見えている!! マークの打ち方を確立した。

50 μm

「マーク③」 マニュアル顕微鏡

200 µm

マークも見えている。

¹⁰B₄C 200 nm 5.6時間照射 ~1 trk/(3µm)²

(I) Doping type

LiNO₃ solution (natural Li) mixed into emulsion gel before coating.

cross sectional view 53neV n glass Base~1mm Émulsion layer

Amount of ⁶Li in the gel is 0.089% in atomic ratio. (5m/s UCN \rightarrow absorption eff. : 8%) ĂgBr ∙ I crystal Range (SRIM) 7.75 α 2.06 MeV μM 51

Deciding absorption points from grain

density

t - part : 32grains

 α -part : 14 grains

Ave. grain density (1st grain~middle of tracks) 0.37 ± 0.08 grains/μm (2.7 μm/grain)

Ave. grain density: (1st grain~middle of tracks) 1.4±0.4 grains/μm (0.71 μm/grain)

We expect spatial resolution of ~ 0.3 micron