Development of beam position detector for CEX calibration of MEG II MEG II実験液体キセノンガンマ線検出器の較正実験に用いる パイオンビーム位置測定器の開発

Kazuki Toyoda

ICEPP, University of Tokyo

17 Feb 2019 25th ICEPP Symposium

Outline

- ➤ Introduction
 - $\circ~$ LXe Calorimeter of MEG II
 - \circ CEX calibration

Simulation Study

- \circ optimization of configuration
- $\circ~$ light yield & radiation hardness

> Active target

- \circ advantage of active target
- \circ reaction on scintillator
- \circ rate consideration

Outline

- ➤ Introduction
 - $\circ~$ LXe Calorimeter of MEG II
 - \circ CEX calibration

Simulation Study

- o optimization of configuration
- light yield & radiation hardness

> Active target

- advantage of active target
- o reaction on scintillator
- rate consideration

Introduction

LXe Calorimeter of MEG II

180°

- \blacktriangleright MEG II searches for $\mu \rightarrow e\gamma$
 - \circ 52.8 MeV/*c*
 - back-to-back
 - \circ same timing
- \succ reconstruct γ using
 - LXe (Liquid Xenon) scintillator
 - 4092 SiPM, 668 PMT Ο
- background events • radiative muon decay o accidental background \rightarrow resolution is important

Introduction

CEX Calibration

- ≻ CEX (Charge EXchange): $\pi^- + p \rightarrow \pi^0 + n$, $\pi^0 \rightarrow \gamma + \gamma$
 - \circ stop π^- beam on hydrogen target at rest
 - $\circ \pi^0$: momentum is 28 MeV/*c*
 - $\circ E_{\gamma}$ depends on angle b/w two γ in Lab. system (54.9 MeV 82.9 MeV)
 - \circ when choose back-to-back event in Lab. system, monochromatic γ can be obtained.

Introduction

Estimation of Energy

Outline

- > Introduction
 - LXe Calorimeter of MEG II
 - CEX calibration

Simulation Study

- \circ optimization of configuration
- $\circ~$ light yield & radiation hardness

> Active target

- advantage of active target
- \circ reaction on scintillator
- \circ rate consideration

Idea of π^- Beam Position Detector

put Sci-Fi (Scintillating Fiber) in front of target

- how finely should it be segmented?
- large enough signal?
- radiation hardness?

 \rightarrow simulation study

insert new detector

- 100 mm length, 500 or 250 µm thickness
- some fibers make a bundle
- 1 SiPM for 1 bundle
- 2 layers for x & y

each bundle is made of some fibers

Simulation Setup

- \circ use geant4 (ver. 10.3.1)
- \circ inject (70.5 ± 2.1) MeV/*c* π^- (100,000 events)
- \circ uncertainty of each detector is considered
 - π^- position detector
 - tagging detectors
 - pre-shower counter
 - BGO calorimeter
 - XEC

XEC O(mm)

decay point (9 mm in transverse)

pre-shower (7 mm, 40 ps) BGO calorimeter (10 mm)

 \circ scintillation photon is not simulated

calculate "accuracy" : *standard deviation* of "estimated time or energy" – "truth"

 $\theta_{\gamma\gamma}$

 LH_{2}

 π^{-}

 π^0

Segmentation Optimization

Light Yield

Kazuki Toyoda

25th ICEPP Symposium

Radiation Damage on Fiber

 \succ Calculation of Dose (Gy = J/kg) ○ beam rate: 1.4 MHz

 $\circ e^-$ contamination: 26 times of π^- (can distinguish by ToF and signal size)

 \circ DAQ days = 10 days/year \times 3-5 years

 \rightarrow 15,000 Gy at center of beam spot

B. Bodmann, U. Holm

Nucl. Instr. and Meth. in Phys. Res. B 185 (2001) 299-304

 10°

PS, SCSN38

Outline

- > Introduction
 - $\circ~$ LXe Calorimeter of MEG II
 - CEX calibration

Simulation Study

- \circ optimization of configuration
- light yield & radiation hardness

Active target

- advantage of active target
- \circ reaction on scintillator
- \circ rate consideration

Active Target

Idea of Active Target

scintillator itself is target
obtain not only injection point but also vertex position
z information is also available

 \rightarrow accuracy of estimation improves

	timing [ps]	energy [keV]
No Detector	73	320
Scintillating Fibers in front of LH2 (bundle width: 5 mm)	51	300
Scintillating Target (width, thickness: 5 mm)	39	230

 \circ easier to operate than LH₂

o but reaction on scintillator is not understood well

- low rate?
- undesirable reactions?

Active Target

Reaction on Scintillator

o coherent

- stopped π^- is captured by a molecule ($\propto Z^{-1}$)
- π^- moves from molecular orbital to atomic orbital ($\propto Z^2$) (ref: Gerstein et al. Usp. Fiz. Nauk (USSR) 97, 3 (1969))
- CEX cannot happen in $C\pi^-$ (because of energy difference b/w C and B) \rightarrow can use only CEX on H

- moving π^- directly collides with nucleus with small probability
- momentum of generated π^0 is not 28 MeV/c because
 - π^- is moving
 - in C, proton has Fermi momentum
- \rightarrow can be source of background

directly

Active Target

Effect of Undesirable Property

➢ Rate

- \circ Experimental results of probability (relative to H_2) of coherent CEX on CH_2
 - min 0.77 % (ref: A. F. Dunaitsev et al. Nuovo Cimento 34, 521 (1964))
 - max 1.45 % (ref: Petrukhin et al. Sov. Phys. JETP 42, 955 (1976))
 - # of H per C is smaller than CH_2 in scintillators \rightarrow smaller probability
- Comparison; MEG 2011 $LH_2 \rightarrow MEG II$ scintillator
 - probability $: 100 \% \rightarrow 0.5-1 \%$
 - beam intensity: 4.4 $\% \rightarrow 100 \%$

* slit was used to reduce too large hit rate and pi- momentum fluctuation

- rate : 12.5 Hz (2.5 h/pate
- : 12.5 Hz (2.5 h/patch) \rightarrow 1.5-3 Hz (10-20 h/patch)

25th ICEPP Symposium

- * 26 patches to cover whole face
- \rightarrow not unreasonable. test experiment is under planning.

 CH_{3}

L**6**/17

Η,

2

Summary

Passive Target

 \circ signal will be large enough even after 5 years radiation

> Active Target

- estimation accuracy improves more if target itself is scintillator σ_t : 70 ps → 40 ps, σ_E : 320 keV → 230 keV
- \circ need to understand more about reaction on scintillator
 - \rightarrow test experiment is under planning
 - rate decrease
 - effect on energy distribution
 - other background ...?