MEG II実験液体キセノン検出器の 目標位置精度達成に向けた研究

東京大学大学院 理学系研究科物理学専攻 素粒子物理国際研究センター 森研究室所属 修士2年 小林 暁

東京大字 素粒子物理国際研究センター International Center for Elementary Particle Physics The University of Tokyo

- Introduction
 - Charged Lepton Flavor Violation(CLFV)
 - $\mu \rightarrow e\gamma$ decay
 - MEG II experiment
 - Liquid xenon gamma-ray detector upgrade
- MPPC alignment
 - Strategy
 - Alignment @ room temperature
 - Alignment @ LXe temperature
 - Comparison & Combination
- Summary & Prospects

- Introduction
 - Charged Lepton Flavor Violation(CLFV)
 - $\mu \rightarrow e\gamma$ decay
 - MEG II experiment
 - Liquid xenon gamma-ray detector upgrade
- MPPC alignment
 - Strategy
 - Alignment @ room temperature
 - Alignment @ LXe temperature
 - Comparison & Combination
- Summary & Prospects

Charged Lepton Flavor Violation(CLFV) as BSM

- Observation of v oscillation
 - Flavor mixing among neutral leptons

- Charged Lepton Flavor Violation(CLFV)
 - No flavor mixing has been observed only among charged leptons.
 - Many BSM models predict detectable mixing.

- MEG experiment searched for µ→eγ decay, one of CLFV processes.
 - Upper limit: $Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}(90\% C.L., 2016)$.
 - ×30 better than previous upper limit by MEGA experiment.

µ→eγ Decay Search

- Signal: Gamma-ray and positron are emitted from single muon decay.
 - same energy, same timing and opposite direction
- Physical background: Radiative muon decay with low energy neutrinos.
- Accidental background: Michel positron + gamma-ray from RMD / AIF.
- High performance detector \rightarrow less background

$$N_{BG} \propto R_{\mu}^2 \times \Delta E_{\gamma}^2 \times \Delta P_e \times \Delta \Theta_{e\gamma}^2 \times \Delta t_{e\gamma} \times T$$

High resolution detector is essential to achieve sensitivity to $\mu \rightarrow e\gamma$!!

MEG II Experiment

- Goal: Search for $\mu \rightarrow e\gamma$ down to Br($\mu \rightarrow e\gamma$)~6×10⁻¹⁴.
- Detector commissioning is in progress.
 - 2018: Pre-engineering run with all detectors.

Upgrade of Liquid xenon Gamma-ray Detector

- Total absorption calorimeter using liquid xenon.
 - Detect VUV scintillation photons(λ ~175nm).
- 216 PMTs \rightarrow 4092 MPPCs @ incident face.
 - ×2 better resolution on energy(~1%) & position(~2.5mm).
 - Alignment & Calibration of MPPC are essential to achieve the goal.
- 2018: performance evaluation with limited number of channels(1016/4092).

Upgrade of Liquid xenon Gamma-ray Detector

- Total absorption calorimeter using liquid xenon.
 - Detect VUV scintillation photons(λ ~175nm).
- 216 PMTs \rightarrow 4092 MPPCs @ incident face.
 - ×2 better resolution on energy(~1%) & position(~2.5mm).
 - Alignment & Calibration of MPPC are essential to achieve the goal.
- 2018: performance evaluation with limited number of channels(1016/4092).

- Introduction
 - Charged Lepton Flavor Violation(CLFV)
 - $\mu \rightarrow e\gamma$ decay
 - MEG II experiment
 - Liquid xenon gamma-ray detector upgrade
- MPPC alignment
 - Strategy
 - Alignment @ room temperature
 - Alignment @ LXe temperature
 - Comparison & Combination
- Summary & Prospects

- Goal: Measure the position of MPPCs with <500µm accuracy.
- MPPCs are aligned on precisely machined PCBs.
 - MPPC array shrinks ~2mm at LXe temperature(165K).
- Perform two complementary measurements.
 - Understand the size of shrinking effect by comparison.
 - Combine them to reconstruct 3D position at LXe temp.

ΤοοΙ	Laser scanner	Gamma-ray	@ room temp.	@ LXe temp.	
Temperature	room temp.	LXe temp(~165K)	3D scanner	Liquid Xe	non
Position	3-D	2-D(@incident face)	laser		~1mn
Coordinate	Local coordinate	Global coordinate	SiPM array	← → X-ray	

MPPC Alignment at room temperature

Measurement with Quantum FaroArm

Gap between segments

- Take images of the surface of MPPC array before filling LXe.
 - MPPC position was reconstructed with the surface image.
 - The position of 426 MPPCs was measured to an accuracy of 120µm.
 - For the rest of MPPCs, data quality was not good enough due to limited motion range of the scanner arm.
- Since MPPCs are aligned on PCBs, the whole structure of MPPC array was reconstructed from the position of limited channels.

Reconstructed MPPC array

•

•

- Liquid xenon stops ~100keV gamma-ray with short range(~3mm).
- When a gamma-ray enters LXe from incident face, it strongly illuminates single MPPC.
 - We can find a gamma-ray spot from MPPC signal.
 - MPPC position can be reconstructed with beam position and the rate.

Collimator / Stage

- Use ⁵⁷Co(E=122keV,136keV) as a gamma-ray source.
- Make a strip gamma-ray beam with a brass collimator.
- Combine a linear stage and a rotational stage.
 - Realize the vertical incidence of gamma-ray to MPPC array.

- Goal : Alignment of collimator's position and direction.
- 1. Laser tracker gives the position and direction of collimator at single point.
- Laser's hit position in Quadrant Photodiode(QPD) gives relative rotation about x and y.
- 3. Bubble gives relative rotation about z(beam axis).

Satoru Kobayashi

- Goal : Alignment of collimator's position and direction.
- 1. Laser tracker gives the position and direction of collimator at single point.
- 2. Laser's hit position in Quadrant Photodiode(QPD) gives relative rotation about x and y.
- 3. Bubble gives relative rotation about z(beam axis).

Hit position in QPD is sensitive to rotation of laser emitter. position

- Goal : Alignment of collimator's position and direction.
- 1. Laser tracker gives the position and direction of collimator at single point.
- 2. Laser's hit position in Quadrant Photodiode(QPD) gives relative rotation about x and y.
- 3. Bubble gives relative rotation about z(beam axis).

- Goal : Alignment of collimator's position and direction.
- 1. Laser tracker gives the position and direction of collimator at single point.
- 2. Laser's hit position in Quadrant Photodiode(QPD) gives relative rotation about x and y.
- 3. Bubble gives relative rotation about z(beam axis).

MPPC Alignment at LXe temperature - Improvement

- 2017: The first measurement
 - S/N: 1~2, only with trigger data.
- 2018: Second measurement
 - Despite the decrease of beam intensity, we achieved better S/N(~10).
 - Short lifetime of ⁵⁷Co(271 days).→Decrease of S/N because of cosmic-ray BG.

Cosmic-ray BG is successfully rejected with the waveform of many MPPCs.

- MPPC position is reconstructed as the mean of symmetric fitting function.
- The position of 827 MPPCs was measured within the limited time slot.

MPPC Alignment at LXe temperature - beam alignment

- Lead strips are mounted outside of incident face.
- The position is measured by two ways.
 - They cause a sharp rate drop in gamma-ray scan.
 - Also measurable from outside by laser tracker.

MPPC Alignment at LXe temperature - References

 $\overrightarrow{x}_{laser} \mapsto (1-a)R(\alpha,\beta,\gamma)\overrightarrow{x}_{laser} + \overrightarrow{c}_{offset}$

Scaling parameter Rotation

Systematic offset

- Fit two results assuming uniform shrinking.
 - 4092 MPPCs @ room temp.
 - 827 MPPCs @ LXe temp.
 - Minimize the distance on $z\phi$ -plane.
- Scale of shrinking effect: as expected.
 - Measured: 18±3ppm/deg(Scaling parameter)
 - Expected: 16~17ppm/deg(PCB, CFRP)
- RMS of fitting residual was 280 μm both in z and $\phi.$
 - There is no significant deviation of the shape of MPPC array.

- MEG II experiment will search for $\mu \rightarrow e\gamma$ down to $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$.
- Improvement of gamma-ray position & energy resolution is expected with MPPCs.
 - It requires precise MPPC alignment.
- We performed two complementary measurements to achieve MPPC alignment with <500µm accuracy.
 - Laser scanner @room temp.
 - Low energy gamma-ray beam@LXe temp.
- In particular, gamma-ray measurement improved in 2018.
 - We achieved the sufficient precision.
 - The systematic offset of MPPC array is to be investigated.

Back Up

- The rotation axis was not perpendicular to the front surface of the collimator.
 - Gamma-ray beam direction is tilted.
- QPD was not correctly calibrated.
 - Found in the verification with laser tracker.

Bubble Level Roll Angle vs Z MEG

Measured MPPCs

Measured MPPCs

