新奇ガンマ線源に向けた Baイオンビームの生成

~量子イオンビーム:QIB~

岡山大学大学院 自然科学研究科 岡山大学 異分野基礎科学研究所量子宇宙研究コア² 藤枝 亮 今井 康貴²

RILC

高エネルギーイオンの励起過程を用いたア線の生成

既存のレーザーコンプトン散乱(LCS)r線源に比べて 高強度なr線になる可能性がある

γ-ray Facilityの現状

レーザーコンプトン散乱(LCS)を用いたγ線の生成

高エネルギー電子との散乱 γ :Lorentz Factor ・電磁波の高エネルギー化 × $4\gamma^2$ ・高強度化 $\propto \frac{1}{2}$

 Higs Photon Energy : 1~100MeV
Photon Flux : 10⁹ photons/sec

• ELI-NP

Photon Energy : 0.2~20MeV Photon Flux : 10^{9~10} photons/sec

・2018現在 コミッショニングフェーズ

DL. Balabanski J. Phys.: Conf. Ser. 966(2018) 012018

星生成過程初期段階のTriple-alpha反応の反応断面積の実験的決定 逆反応の観測をすることにより値を決めることができる

 ${}^{4}_{2}\text{He} + {}^{4}_{2}\text{He} \leftrightarrow {}^{8}_{4}\text{Be} + \gamma - 91.78\text{keV}$ ${}^{8}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + \gamma + 7.367\text{MeV}$

8MeV , 1017 photons/sec

QIBの原理実証実験

--開発方針

・493nmレーザー(10mW)

→ 987nmから倍波をとって生成

- ・650nmレーザー
- ・Baイオン源 イオン電流:1 μA エミッタンス:1mm mrad

<u>信号観測レート:8.8×10⁵Hz</u>

レーザーシステム

- ・493nmのレーザーは987nmのECLDの倍波をとる
- ・将来的に周波数安定化システムを入れるためにPBSでパスを作っておく

Z. Burkley¹ · C. Rasor¹ · S. F. Cooper¹ · A. D. Brandt¹ · D. C. Yost¹

Ybドープファイバーを用いたアンプ 先行研究では100倍程度の増幅を実現 10倍程度の増幅を目指し開発中 (4回生卒業研究)

Baイオン源の準備状況

前面供給表面電離型 立ち上げ実験(イオン電流のみ) ・数百nA程度 今後、既存のビームラインにつなげて、 エミッタンスメーターと レーザー励起による蛍光で、ビーム性能を評価

Re表面付近でBaを電離させて、ビームとして引き出す

Signal観測レート

イオンビーム

イオン	Ba+	
運動エネルギー	10keV 今後実験により	測定
エネルギー広がり	10-4	
エミッタンス	1mm mrad	
励起点ビームサイズ(水平、垂直)	0.1~1mm、1~20mm	
曲率半径	0.4m	
イオン進位		
■	10.5ns	
A係数	9.53×10 ⁻⁷ s ⁻¹	
レーザー		
波長	493nm	
パワー	10mW	
サイズ	lmm	

Signal = (1イオン辺りのシグナル)×(イオンフラックス)×(量子効率×立体角)

イオン電流100nA

 $=0.0037 \times 0.6 \times 10^{12} \times 4 \times 10^{-5}$

=8.8×10⁴Hz

- ・我々のグループでは、重イオンとレーザーを用いた高強度ガンマ線源 のための基礎研究を行なっている
- ・提案中のものは従来のLCSγ線源と比べて、物理過程の断面積が 大きく、高強度化が期待できる
- ・現在は低エネルギーBaを用いた原理実証実験の準備をしている
- ・現在の準備状況

ーレーザー 基本的なパスが完成したが、レーザーパワーが足りていないので ファイバーアンプの導入を検討中 (1.3mW → 10mW)

イオン源 数百nA程度の出力のイオン源の立ち上げ中 今後、エミッタンス測定により、ビーム性能を評価

<u>信号観測レート:8.8×104Hz</u>

QIB Collaboration

笹尾登,吉村太彦,吉村浩司,吉見彰洋,
植竹智,宮本祐樹,増田孝彦,原秀明,
RIIS 平木貴宏,今村慧,今井康貴

上垣外修一,中川孝秀,金井保之, 市川雄一,長友傑

Back up

	simulation	Ion Source(ECR)	lon Source(thermal)
ビーム電流	1μΑ	1μΑ	10nA
規格化エミッタンス	1 mm mrad	1.0 mm mrad	5.5 mm µrad
エミッタンス(10keV)		2.5 mm mrad	14.1 mm µrad
エネルギー幅	10-4	1.5×10-3	1,1×10 ⁻⁵
輝度[A/(mm mrad) ²]		1.0×10-4	4.6

Thermal Ion Sourceの方がエミッタンスがよく、最終的なビーム強度は Thermal Ion Sourceの方が良い ECRの方で46mAが出れば、Thermal Ion Sourceに匹敵するが、難しい(らしい)

QIBの見積もり

• Super-KEK-B ring

 γ=250 (requires super-conducting magnets)

- ρ=210m B=8.5T
- Ni=10⁹ ions/bunch
- Energy spread (dE/E)=0.5 x 10⁻³

• H-like ion

- Z=22 Ti H-Like
- Eeg=5 keV

「相対論的イオンビームによる高強度γ線源」 本田、第14回日本加速器学会プロシーディング 'Intense gamma radiation by accelerated quantum ions' 笹尾、18th Lomonosov

E.G.Bessonov and K.-J.KIM, PRL 76 431 (1996.) "Radiative Cooling of Ion Beams in Storage Rings by Broad-Band Lasers"

1イオンが励起光と1回交差した時の放射個数

$$\Delta N^{s} = 2(1+\beta_{z})\frac{\bar{\sigma}}{1+D}\frac{I}{\hbar\omega_{L}}\frac{\sigma_{L}}{c} \sim 1$$

D:Saturation Parameter, σ : Laser線幅込みの実効的な断面積 σ∟/c:相互作用長(時間) I/h*ω*: Laser Flux

1 bunchが30MHzだとすると 3×10¹⁶ photon/sのγ線が得られる

これまでの研究

(1) E.G. Bessonov and K.J. Kim, Phys. Rev. Lett 76(1996) 431

→レーザーを用いたイオン冷却

(2) E.G. Bessonov, Nucl. Instr. Meth. B309 (2013) 92

(3) M.W. Krasny, arXiv:1511.07794v1 [hep-ex] 24 Nov 2015

- → Gamma Factory計画(QIBと同種原理を用いた計画)
- PSI(Partially-Stripped Ion)を加速し、 レーザー励起させた例はない

Gamma Factory(CERN)

SPSにおいてXe³⁹⁺(Z=54)ビームの蓄積の成功

⁴He(2α,γ)¹²Cの**反応率**を逆反応をγ線を用いて実験的に測定 星の進化を記述する上で重要なパラメーター ⁴He **~8MeV, 10¹⁷/sec** ⁸Be

 ${}^{4}_{2}\mathrm{He} + {}^{4}_{2}\mathrm{He} \leftrightarrow {}^{8}_{4}\mathrm{Be} + \gamma - 91.78\mathrm{keV}$ ${}^{8}_{4}\mathrm{Be} + {}^{4}_{2}\mathrm{He} \rightarrow {}^{12}_{6}\mathrm{C} + \gamma + 7.367\mathrm{MeV}$

- ・残留ガスとの衝突
- ・2光子吸収によるイオン化
- ・バンチ内の散乱

・ 磁場による Stark効果

イオンビームの蓄積(CERNでの先行研究)

+39 Xe P-like Xenon

Xe39+ lifetime MD in the SPS

- 14-15 Sep. 2017:
 - first SPS MDION cycle setup
 - Lifetime at injection (23.6 GeV/Z)
 - Effect of 200MHz RF ON/OFF
- 13/19-20 Oct. 2017:
 - Lifetime at injection (23.6 GeV/Z) and flat top (270 GeV/Z)
 - Effect of 200MHz RF ON/OFF
- 08 Nov. 2017:
 - Lifetime at injection (23.6 GeV/Z) and flat top (189 GeV/Z)

SPSでのXeイオンの蓄積・ビーム寿命の測定(2017) 1714ms程度の寿命 今年はH-like Pbイオンを用いて実験?

CERN's accelerator complex

Baイオン源

イオン組成:K+、Cs+

フィラメント熱放出型

4重極質量分析機を用いた、組成測定

過去に使用実績のあるBaイオン源に変更

ICEPPシンポジウム

Yb準位図