HL-LHCのATLAS実験に向けたAM-MDTミューオン トリガーのセグメント再構成と期待性能の研究

Yunjian He/賀 雲剣 Kuze Group, Tokyo Institute of Technology 25th ICEPP Symposium 2019 Feb. 19th

AM_(Associative Memory)を用いた MDT _(Monitored Drift Tube)ミューオントリガー を開発して

2026年から始まる HL_(High-Lumi)-LHCのATLAS実験に 利用可能であることを示す

25th ICEPP Symposium - 2019.02

LHCとは

25th ICEPP Symposium - 2019.02

ATLAS 実験とは

25th ICEPP Symposium - 2019.02

HL-LHCとは

2019/02/19

HL-LHCとは

2019/02/19

ATLAS実験のミューオン検出器

- TGCとRPC: 高速応答(25 ns)ができ、<mark>今の初段トリガー</mark>発行に使用

- MDT: 空間分解能に優れるが、700 nsの読み出し時間が必要、精密測定

25th ICEPP Symposium - 2019.02

HL-LHCならMDTも初段トリガーに使える

- 初段トリガー<mark>全体</mark>が使える時間: 2.5 µs → 10 µs
- ・ 改良したATLAS実験のMDTの読み出し所要時間: 2.2 μs

ATLAS日本でMDTトリガーをやっている人: 奥村 恭幸(ICEPP staff) 小玉 昂史(東大M2) 自分

初段トリガーでMDTの情報を

利用できるようになった!

MDTミューオントリガーを

導入して精度をあげよう

ATL-TDR-026 LHCC-2017-017

25th ICEPP Symposium - 2019.02

荷電粒子が磁場の中の軌道の曲がり具合を測り 曲率半径を推定して運動量を判定

測れるのは各MDT stationでのセグメント

2019/02/19

3つのMDT stationでセグメント(ミューオン部分飛跡)を検出できる - セグメントの位置座標→ミューオンがどこを通ったのか

- セグメントの向き→ミューオンがどの方向へ飛んだのか

AM-MDTトリガーの構成と現状

25th ICEPP Symposium - 2019.02

Associative Memory とパターン

高い効率のpattern finding

AMからの出力パターン数

再構成効率

ATLASのBarrel Inner Largeの部分のpattern finding の結果

- 1入力セグメント入力に対して
 1~2出力パターン
- ほとんどの領域で~98%の再構成効率

25th ICEPP Symposium - 2019.02

高精度のパターン作り

真の方向の差(最良値)

真の位置の差(最良値)

BILの部分の結果 この円筒の側面の一部

セグメントと対応するパターンを 正しく選んだ場合 1 mradの角度分解能と2 mmの空間分解能 を見込める

運動量(p_T)と関連するパラメータを求めて パラメータが大きい/小さい→運動量 (p_T)が小さい/大きい の関係で運動量 (p_T)を推定

1セグメントも検出すれば 事象選別ができる

- 1 segment (inner以外): α
- 2 segments: β
- 3 segments: sagitta/β

25th ICEPP Symposium - 2019.02

AMの出力から計算したパラメータとp_Tの関係

2019/02/19

16

2019/02/19

17

理想なトリガー:

AM-MDTミューオントリガーの性能評価

2019/02/19

18

Z → µµ, pile up 200, cavern BG 25のMC sampleで Z由来のミューオントラックのみを使い AM-MDTを適用できる事象でテスト

AM-MDTミューオントリガーの性能評価

2019/02/19

19

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults

AM-MDTミューオントリガーの性能評価

2019/02/19

20

- ・HL-LHCのATLAS実験でトリガー精度維持のためにMDT ミューオントリガーを導入
- 素早くセグメントを検出するために Associative Memoryを使用
- AMで高い角度分解能と空間分解能の再構成が可能
- 再構成セグメントの数に応じた運動量推定法を採用
- ミューオン事象に対して高い運動量弁別能力を持つ

これから:

- 背景事象の除去性能の評価
- ハードウェアへの実装とテスト

AM-MDTの テストボード **→** @CERN

25th ICEPP Symposium - 2019.02

22

BACKUP

Backup – Monitored Drift Tube

- 直径3 cm程度のガスチューブ
- 最大ドリフト時間700 ns、1tube分解能80 μm

- 3/4層のtube→1 multi-layer
- 2 multi-layes \rightarrow 1 station
- ・ セグメントの位置分解能35 μm

Backup - HL-LTCのATLASのトリガー

2019/02/19

24

ATL-TDR-029 LHCC-2017-020

アップグレード後の Level-0 トリガーの基本設計

25

Trigger	Level-1 $p_{\rm T}$ Threshold [GeV]	Level-1 Rate	Level-1 $p_{\rm T}$ Threshold [GeV]	
	at $\mathcal{L} = 3 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	[kHz]	at $\mathcal{L} = 7.5 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	
isolated single <i>e</i>	32	14	50	
di-e	19	5	35	
single μ	25	15	40 (with low efficiency)	
10^{3} 10^{2} 10^{2} 10^{2} 2 -station 3-station 1 4 TLAS Simulation 1 5 10 15 2 p_{T} The state stat	← L=7.5×10 ³⁴ cm ² S ⁻¹ ← L=7.5×10 ³⁴ cm	0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Target 0.1 Target 0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	ATLAS Simulation $\sqrt{s} = 14 \text{ TeV}$ $W \rightarrow hv$ $HH \rightarrow \tau\tau b\bar{b}$ $t\bar{t}$ Compressed SUSY $(\Delta m (\chi_2^0, \chi_0^0) = 40 \text{ GeV})$ 40 60 80 100 120 Lepton p _T Threshold [GeV] 率 と 閾値の関係	

2019/02/19

左のよう事象に対して、事前にAMの中に右のような パターンを保存しておく、パターンは層と番号からなる

2019/02/19

27

AMで各パターンを一緒に照合することができる dataを層ごと並行に流して比較操作を行う

²⁵th ICEPP Symposium - 2019.02

2019/02/19

28

2019/02/19

29

2019/02/19

完全に一致したパターンがある場合、読み出し操作が 始まり、パターンに紐づけされた情報も一緒に出力

AM pattern for L0 MDT

• Input hit representation (16 bits)

- (Signed) drift radius + Tube channel ID

description	spare	tube channel number	sign	drift radius
number of bits	1	10	1	4

2019/02/19

Latency for segment reconstruction

	item	latency [ns]	note
1	Transceiver SerDes latency + FIFO	128	
2	Logic in mezzanine FPGA before AM	20	5 clocks
3	FIFO at FPGA + Latch at AM	16	4 clocks (3+1)
4	AM segment finding	100	25 clocks in AM (at maximum)
5	pattern readout	25	
6	FIFO at FPGA + Majority logic selection	20	5 clocks (3+1+1)
7	Logic in mezzanine FPGA	40	10 clocks (to extract parameters)
8	Transceiver SerDes latency + FIFO	128	_
9	Reservation for queuing	144	reset AM chip (1 clock) +
			hits load to FPGA per layer (10 clocks at maximum) +
			AM segment finding (25 clocks at maximum)
	total	621	

Table 9: Latency assuming 250 MHz clock speed at FPGA, and 250 MHz clock speed at AM chips.

Backup - $\alpha \& p_T$ の相関関係

しきい値決定用の η , ϕ , p_T が flat な particle gun sample

33

Backup - $\beta \& p_T$ の相関関係

Backup - sgt & p_Tの相関関係

しきい値決定用の η , ϕ , p_T が flat な particle gun sample

36

ηによって通過した磁場が異なるため、領域分割を行った

Backup - 閾値決定方法

2019/02/19

しきい値決定領域にあるイベントの分布を積分し 積分値が全体の95%となるパラメータの値を しきい値とする

