LHC-ATLAS実験における FTK Fast Simulationの開発

早稲田大学 植原靖裕

Outline

- ·ATLAS検出器,内部飛跡検出器
- ・ATLASトリガーシステム
- FastTracKer (FTK)の飛跡再構成の流れ
- \cdot MC / FTK simulation
- ・FTK fast simulation(FastSim)の概要
- ・FastSim新手法の開発状況
- ・まとめ,今後

ATLAS検出器

- LHC加速器のビーム衝突点に設置
 - 内部飛跡検出器
 - カロリメータ
 - ミューオン検出器
- 運動量、エネルギー等を精密に測定

〇内部飛跡検出器

- Pixel:η-φ2次元読み出し (3層) 最内層をB-layer
- SCT: η方向1次元の読み出し(8層)

ATLASトリガーシステム

ATLASトリガーシステム

FTKによる恩恵: τ triggerの改善

 τ_{had}

- ✓ ハドロン崩壊するτの同定において QCDによるjetとの分離が非常に重要
 - ハドロン崩壊するτ: 狭い範囲に1or3本の荷電粒子の飛跡が存在
 - QCDによるjet: 広い範囲に荷電粒子が分布
- <u>OFTKによる恩恵</u>
 - ・飛跡の再構成
 - 全領域における τ の同定
 - ・衝突点の再構成によるパイルアップの抑制
 - 分離変数の改善

Fast TracKer(FTK) 飛跡再構成までの処理^{7/19}

FTK Simulation:実機の性能評価

✔ FTK Systemを処理ごとにsimulate

- ⇒ 各処理をbit levelで動作確認可能
- ⇒ <u>FTK Systemの理解・デバッグにおいて非常に重要</u>

ICEPPシンポジウム

ヘクラスタリング
 ーデータの分配
 ーパターンマッチ
 ー1st, 2nd stage fit

<u>処理時間大</u> <u>リソース大</u>

⇒ 全モンテカルロシミュレーションに FTK Full Simulationを走らせるのは 不可能 FTK Fast Simulation の開発

✓ 簡易なアルゴリズム
– 高速
– リソース小
✓ Simulated FTK track を再現
が必要不可欠

FTK Fast Simulation (FastSim)

ICEPPシンポジウム

✔ 高速処理

✔ FullSimによる再構成率・分解能を再現

<u>O主なmethod</u>

Truth-seeded approach

✓ FullSimの再構成率・分解能 (w.r.t Truth)を保存
 ✓ 乱数でFTK trackのパラメータを決定
 ✓ シンプルで高速

Offline-seeded approach

✓ FullSimの再構成率・分解能 (w.r.t Offline track)を保存

- ✓ 乱数でFTK trackのパラメータを決定
- ✓ シンプルで高速
- √ パイルアップを再現可能

FTK Fast Simulation (FastSim)

✔ 高速処理

✓ FullSimによる再構成率・分解能を再現

シンプル・高速・パイルアップを再現可能な **Offline-seeded method**を開発

ICEPPシンポジウム

Offline-seeded approach

✓ FullSimの再構成率・分解能 (w.r.t Offline track)を保存 ✓ 乱数でFTK trackのパラメータを決定 ☆シンプルで高速 ✓ パイルアップを再現可能

Hit

11/19

12/19 **Offline-seeded Fast Simulation 概要** Output Input **Fast Simulation Offline track parameters** FastSim FTK track parameters q/Pt(Pt), η, φ, d0, z0 q/Pt(Pt), η, φ, d0, z0 (参照) Offline track ✓ Offline-seeded FastSimの構造 FastSim Efficiency map - Input : Offline track parameters - Output : FastSim FTK track parameters - 参照: 各phase space(Region I)におけるEfficiency map 各phase space(Region II)におけるSmearing function Smearing function ✔ 理論上パイルアップも再現可能 シンプル,高速,パイルアップ再現可能 FastSim FTK track

使用サンプル

- ✔ 10muons/event を 500000events(5M muons)使用
- ✔ 最もシンプルな飛跡でmethodの確立

Matchingの定義

Region I の定義 (For Efficiency)

各phase spaceにおけるEfficiency map と smearing function を用意する ために領域の分け方を定義

- ✓ EfficiencyのOffline track parameter依存を調べた
- ✓ Efficiencyは Offline trackの <u>q/Pt, η, d0, z0に依存</u>する
- ⇒ |q/Pt| , |η| , |d0| , |z0| で計108領域を定義

Efficiency map のための領域分け						
Region	1	2	3	4		
q/Pt	0 ~ 0.4	0.4 ~ 0.8	0.8 ~ 1			
lηl	0 ~ 0.5	0.5 ~ 1.5	1.5 ~ 2	2 ~ 2.5		
d0	0 ~ 1.2	1.2 ~ 1.6	1.6 ~ 2			
z0	0 ~ 72	72 ~ 96	96 ~ 120			

各parameterに関するmatching efficiency分布

Efficiency mapping

- ✓ Region I の各領域におけるefficiencyを調べた (Efficiency map)
- ✔ Efficiency mapをinputのOffline trackに適用
 - ⇒ *FullSim(w.r.t Offline)のEfficiency*を再現

O Performance

- ✓ FullSimとFastSimのefficiencyを 比較した
 - FullSimとFastSimでよく一致
- Efficiency map works well !

Region IIの定義 (For Smearing)

✓ Resolutionと Offline track パラメータの相関を調べた

 $\begin{array}{l} \textbf{Resolution} \equiv \textbf{Parameter}_{offline} \\ - \textbf{Parameter}_{FTK} \end{array}$

- ✓ Resolutionは Offline trackの <u>q/Pt と η に依存</u>する
- ⇒ |q/Pt| , |η|で108領域を定義

108領域 = 9 (q/Pt) x 12 (η) 領域

Smearing functionのための領域分け

Region	1	2	3	4	5	6	7	8	9	10	1	12
q/pt	0~0.2	0.2~0.3	0.3~0.4	0.4~0.5	0.5~0.6	0.6~0.7	0.7~0.8	0.8~0.9	0.9~1.0			
lηl	0~0.3	0.3~0.5	0.5~0.7	0.7~0.9	0.9~1.1	1.1~1.3	1.3~1.5	1.5~1.7	1.7~1.9	1.9~2.1	2.1~2.3	2.3~2.5

ICEPPシンポジウム

16/19

Resolution Smearing

- ✓ Region IIの各領域におけるresolutionを調べた
- ✓ 各resolution分布に対してdouble gaussianでfit

$$F(\mathbf{x}) = \mathsf{A}\left(\frac{\mathrm{Frac}}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma_1^2}\right) + \frac{(1-\mathrm{Frac})}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma_2^2}\right)\right)$$

- ✓ すべてのfit parameterをsmearing function として保存
- ✓ Smearing functionをOffline trackに適用
- ⇒ *FullSim(w.r.t Offline)のresolution*を再現

O Performance

- ✔ FullSimとFastSimのresolutionを比較
 - Bulk partに顕著な違いはない
 - Tail partでずれ (next page)

FastSim

ICEPPシンポジウム

-0.2

∆⁰d0[⁴mm]

-1

Δ¹20[mm]

Tail partの要因

✓ <u>Ad0に関してtail partの要因を調べる</u> ためにBulk partとtail partのOffline track のparameterを比較

<u>O結果</u>

- ✓ η と Φ の分布に顕著な違いがみられた
 - η: High |η| の領域
 - Φ:22個のピークが見られた
 - ⇒検出器の構造が要因として考えられる ("22"がB-layerの数と一致)

<u>O今後</u>

✓ Tail partにおけるHit情報を詳細に調べ FullSimとFastSimの一致を試みる

Bulk part と tail part におけるOffline track分布の比較

Summary & Future

OSummary

- ✔ FTKを用いた解析に高速なFTK Simulation(FastSim)の開発が必要である
- ✓ シンプルかつ高速なOffline-seeded FastSimの開発を行った
 - FullSimによる再構成率を再現
 - FullSimによる分解能を再現

<u>OFuture</u>

- ✓ ATLASの解析frameworkへの導入を完了させる
- ✓ 導入後、trigger simulationによるFullSimとFastSimの比較を行う
- ✓ Trigger groupからfeedbackをもらいupdateを行う
 - パイルアップの考慮
 - Track Parameterの相関の考慮

20/19

Backup

ATLAS解析frameworkへ導入

✔ Offline-seeded Fast Simulation の1st versionを提供

- Efficiency map <a>Jone
- Resolution smearing <a>Almost Done (tail study : ongoing)
- ✓ Reconstruction内でFTK trackを再構成
- ✓ SeedをOnline Trackに移行(RoI ⇒ 全領域)

- ✓ Trigger simulationによるFullSimとFastSimの比較
- ✓ 各trigger groupからfeedbackをもらいアップデート
 - パイルアップ の考慮
 - Track parameter の相関の考慮

21/19

Δn

2D resolution smearing

✔ OfflineとFTK track parameter の相関を見た

- Δq/Pt vs ΔΦ, Δq/Pt vs Δd0, ΔΦ vs Δd0, Δη vs Δz0 (こ強い相関
- ✓ 相関を考慮し2次元でresolution smearing
 (2D resolution smearing)を試みた
 ⇒ First stepとしてΔη vs Δz0 に着目

<u>O2D resolution smearingの手順</u>

✓ Region II の各領域におけるΔη vs Δz0 分布を調べた ✓ 各Δη vs Δz0 分布に対して2D double gaussian でfit

$$f(\mathbf{x},\mathbf{y}) = \mathbf{A}\left(\frac{\mathbf{B}}{2\pi\sigma_{x1}\sigma_{y1}\sqrt{1-\rho_{xy}^{2}}}\exp\left(\frac{-1}{2(1-\rho_{xy}^{2})}\left(\left(\frac{\mathbf{x}-\mu_{x}}{\sigma_{x1}}\right)^{2}-2\rho_{xy}\left(\frac{\mathbf{x}-\mu_{x}}{\sigma_{x1}}\right)\left(\frac{\mathbf{y}-\mu_{y}}{\sigma_{y1}}\right)+\left(\frac{\mathbf{y}-\mu_{y}}{\sigma_{y1}}\right)^{2}\right)\right) + \rho_{xy}: \text{ correlation factor } \frac{(1-\mathbf{B})}{2\pi\sigma_{x2}\sigma_{x2}\sqrt{1-\rho_{x2}^{2}}}\exp\left(\frac{-1}{2(1-\rho_{xy}^{2})}\left(\left(\frac{\mathbf{x}-\mu_{x}}{\sigma_{x2}}\right)^{2}-2\rho_{xy}\left(\frac{\mathbf{x}-\mu_{x}}{\sigma_{x2}}\right)\left(\frac{\mathbf{y}-\mu_{y}}{\sigma_{y2}}\right)+\frac{1-\rho_{xy}^{2}}{2\pi\sigma_{x2}\sigma_{x2}}\left(\frac{1-\rho_{xy}^{2}}{\sigma_{x2}}\right)\right)$$

 $\Delta q/pt$

Resolution(offline - full sim FTK)の相関

∆q/pt

 $\Delta q/pt$

 $(\underline{y-\mu_y})$

Δq/pt

✓ すべてのfit parameterをsmearing functionとして保存
 ✓ Smearing functionをOffline trackに適用

2D resolution smearing

OPerformance

- ✓ FullSimとFastSimの相関係数を比較
 - high |η|で一致
 - low |ŋ|では一致していない
- ✔ FullSimとFastSimのresolutionを比較 - FullSimとFastSimでずれ

 ✓ 適切なsmearing functionを得るために fit algorithmの改善を行う (特に low |η|におけるfitを改善する)

FullSim と FastSim のresolutionを比較

Pion FTK Tracks

- \checkmark We checked the FTK tracks produced by Pion.
 - Since Pion interaction to detector is higher than Muon.

OCompare Pion with Muon

Resolution comparison between Muon and Pion

- ✓ We checked resolution of pion in 108 regions.
- ✓ Right plots show the resolution comparison between Muon and Pion in one of the 108 regions.
 - No difference in q/pt, η, Φ and z0
 - Slight shift in d0
- ⇒ Currently under investigation.

Applying Muon function to Pion

- We compared narrow σ and wide σ between
 Pion and Muon.
- ✓ Right plots show narrow σ and wide σ of z0.
 (other parameters are in backup p.24,25)
- \checkmark Overall, there is no big difference.
 - ⇒ <u>We tried applying smearing function</u> of Muon to Pion Offline tracks.

OPerformance

- ✓ Resolution smearing works well.- except d0
- ✓ Efficiency of FullSim is about 1~2% lower than that of FastSim.

Narrow σ & Wide σ for each of 108 regions Muon and Pion

Applying method to Pion

✓ We prepared efficiency map and smearing function for Pion and applied them to Pion Offline tracks.

OPerformance

- ✓ Top right plot shows the efficiency comparison between FullSim and FastSim.
- ✓ Bottom right plot shows the resolution comparison between FullSim and FastSim.
- Both efficiency map and smearing function work well.

<u>ONext</u>

✓Consider how to treat the difference between Pion and Muon

Efficiency Comparison between FullSim and FastSim

Resolution comparison between FullSim and FastSim

Resolution smearing with hit information^{27/19}

- ✓ Tailの改善を試みるためにOffline trackの hit情報を考慮
- ✔ Offline trackを2つのカテゴリに分類
 - Tracks with IBL and B-layer hit
 - Tracks missing IBL or B-layer hit
- ✓カテゴリごとにsmearing functionを用意し適用

OPerformance

- ✓ FullSimとFastSimのresolutionを比較
 - q/Pt, η, Φ, z0に関して良く一致
 - d0に関してtail partでずれが残る
- ✔ Hit情報を使ったが大きな改善はなかった

→100倍以上速いシミュレーションが必要(=Fast Simulation) 方法: "Truth-seeded"

Truth(ジェネレータの情報)を元にFTK飛跡のパラメータを乱数で決定 ※Fullとのトリガー使用時の差を把握・補正する必要あり

<本研究の目的> Truth-seededによるFast Simulationを作り

Full Simulationの再構成率・分解能を乱数で再現する

2017年2月8日(火) 修士論文発表会 早稲田大学先進理工学研究科 物理学及応用物理学専攻寄田研究室 修士2年亘龍太郎

スライド

Process time

□ATLAS実験ではLHCの高輝度環境化への対応として FTKの挿入が進められている

FTK:

研究背景

- 高速で飛跡を再構成するハードウェアシステム

- 入力:内部飛跡検出器のSi検出器12層からのヒット情報

- 出力: $p_T > 1 GeV/c$ 以上の飛跡のトラックパラメータ

 FTK挿入前
 FTK挿入後

 再構成対象
 Rolのみ
 全領域

 処理時間
 100ms/Rol
 100us/all

□FTKを用いてデータを解析するためには、

比較するための大量のシミュレーションサンプルが必要(O(10⁹)) □現状のシミュレーションサンプルの再構成時間:~30秒 /event (FTKなし)

ロ現状のFTKシミュレーションによる再構成:~60秒 /event

本研究の目的:

高速なFTKのシミュレーションを構築すること

以降、 従来のシミュレーションをfull sim, 高速なシミュレーションをfast sim と呼称する。

 $(\mathbf{p}_T, \mathbf{\eta}, \boldsymbol{\phi}, \mathbf{d}_0, \mathbf{z}_0)$

29/19

Process Time

✓ 10muon 500k eventsを使用(Input: offline track 2,499,308 tracks)
 ✓ コード開始から測定、1Eventの処理が終わるタイミングで計測、プロット
 ✓ 同コードを10回回した平均時間を測定

FTKによる恩恵:b-jet tagging

Normalized Entries Barrel ($|\eta| < 1.1$) ATLAS vs = 14 TeV Simulation Offline Light-Flavor $<\mu> = 60$ 10⁻¹ Offline b-Jet — Re-fitted FTK Light-Flavor Re-fitted FTK b-Jet 10⁻² 10⁻³ 10-4 10⁻⁵ -0.5 0.5 1.5 -1.5 -2 0 d0 [mm]

Bハドロン:寿命長い ⇒ 二次崩壊点 インパクトパラメータ(d0)大 FTKによる全領域での衝突点・飛跡再構成 ⇒ オフラインと同等のクオリティで d0を再構成

5つのパラメータについて

FTK の扱う飛跡パラメータは以下 の 5 つ (helix parameter という)

Pt ... xy平面での運動量(横運動量)

n … 天頂角を表す疑ラピディティ

... x軸方向からの方位角

Φ

d₀... xy 平面上における、粒子の飛跡と衝突点の間の最近接距離 $\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$ z₀... 最近接点のz座標 ATLAS座標系 (天頂角) ビーム軸を含む平面 ビーム軸垂直平面 X,Y 飛跡 θ θ 最近接点 $\mathbf{d}_{\mathbf{0}}$ Z_0 0 Φ (ビーム軸方向) $\eta = -\ln(tan)$ x^{*}(LHCリングの中心方向)

ICEPPシンポジウム

 $P_{\rm t} = \sqrt{P_{\rm x}^2 + P_{\rm y}^2}$

P_x:荷電粒子のx方向の運動量

内部飛跡検出器とFTKの飛跡再構成の原理

ヒットの情報を荒い位置情報に変換 あらかじめ用意したパターンと比較し一致 したものを飛跡の情報として取得 <u> ②線形近似</u>

1st stage fit ... 質の悪い飛跡を排除

$$\chi^2 = \sum_{i=1}^{6} \left(\sum_{j=1}^{11} S_{ij} x_j + h_i \right)^2 \frac{S_{ij}}{x_j} \cdot h_i : 定数項$$

 $x_j : ヒットの座標$

2nd stage fit ... 1st stage fitで排除されなかった飛跡の内 さらに質の良い飛跡を選別

$\mathcal{X}^{2} = \sum_{i=1}^{11} \left(\sum_{j=1}^{16} S_{ij} x_{j} + h_{i} \right)^{2}$	<i>S_{ij},h_i</i> :定数項 <i>x_j</i> :ヒットの座標
---	--

各パラメータの算出

$$\widetilde{p}_i : パラメータ$$

 $\widetilde{p}_i : パラメータ$
 $C_{il}, q_i : 定数項$
 $\widetilde{p}_i = \sum_{l=1}^{N} C_{il} x_l + q_i$
 $(i=1,2,..5)$
 $x_l : ヒットの座標$

FTK Fake track ("Fake")

✓本来飛跡がないところに誤って飛跡を再構成

✔ Hit情報から飛跡を再構成することにより生成

- Truthとは無関係
- ー Offline trackにも共通の"Fake"が再構成される
- ⇒ Offline trackからであれば再現できる
- <u>○ "Fake"による問題</u> **Ex.) ハドロン崩壊する⊤の誤同定**

ハドロン崩壊するτ

✓ π[±]が1 or 3本で同定

FTK Fake track ("Fake")

✓本来飛跡がないところに誤って飛跡を再構成

✔ Hit情報から飛跡を再構成することにより生成

- Truthとは無関係
- ー Offline trackにも共通の"Fake"が再構成される
- ⇒ Offline trackからであれば再現できる
- "Fake"による問題
 Ex.) ハドロン崩壊するтの誤同定
 本来3本なのに4本と勘違い
 ⇒ rとして同定されない
 本来2本なのに3本と勘違い
 ⇒ rとして同定
 - ✓ FastSimで再現しなければ MCとデータにずれ

再構成率の再現

- ✓ Full simの再構成率分布を用意
 ○特徴
- ✓正負で対称
- ✓ q/Pt,η,d0,z0に依存
- ⇒ q/Pt,ŋ,d0,z0の正領域を分割

<u>領域分けの定義</u>

region	1	2	3	4	
q/Pt	0~0.4	0.4 ~ 0.8	0.8 ~ 1		
eta	0~0.5	0.5 ~ 1.5	1.5 ~ 2	2~2.5	
d0	0~1.2	1.2 ~ 1.6	1.6 ~ 2		
z0	0 ~ 72	72 ~ 96	96 ~ 120		

<u> ✓ |q/Pt|,|η|,|d0|,|z0|で108領域に分割</u> <u>→各領域の再構成率を調べる</u>

<u>Input</u>

再構成率の再現

分解能の再現

分解能 = matched Offline track parameter

– matched FTK track parameter

44/19

Resolution vs nPixelHits_offlinetrack(muon)

49/43

Resolution vs nPixHits on offlinetrack

Resolution vs nPixHits on offlinetrack

Cross section of B-layer

ICEPPシンポジウム

ATLAS_X_Y

d0TailHit_X_Y

ICEPPシンポジウム

54/19

d0TailHit_X_Y_OnBlayer

Compare tail and bulk

Offline tracks parameters

FTK tracks parameters

FullSimとFastSimのParameter分布の比較

✓ FullSimの再構成するすべてのphase spaceをFastSimで再構成できているかの確認

58/43

FullSimとFastSimのParameter分布の比較

✓ FullSimの再構成するすべてのphase spaceをFastSimで再構成できているかの確認

Fake study

✓Kodai at Waseda has studied FTK fake track

 \checkmark I would like to introduce an interesting study in that about "duplicate track"

OIn this study

✓Using sample

"group.trig-daq.ftk.MC16.PERF.AOD_FTK.20171207_1_EXT0 (total 5M muons)" ✓Matching method is following this

61/19

Offline software validation (*duplicate track***)**

ICEPPシンポジウム

- ✓In our matching method, there are pairs with two or more FTK tracks for one offline track with taking the minimum ΔR
- \checkmark We focus on two matched FTK tracks (with $\Delta R \leq 0.02$) for one offline track
- Ex.) <u>OMake pair with minimum ΔR</u>

"FTK track 1" pair with "offline track1" *"FTK track 2"* pair with "offline track3"

"FTK track 3" pair with "offline track3"

"FTK track 8" pair with "offline track10"

<u>OResult</u>

- **√**On η and Φ, there is unique structure
- **√**About η, there are 4 peaks
- ✓ About Φ, there are 16 peaks
 - ⇒ "4 on η" and "16 on Φ" match the number of FTK η-Φ tower

⇒We check the FTK bank-ID on these FTK tracks

 ΔR with *"FTK track 2"* and "offline track3" ≤ 0.02 and ΔR with *"FTK track 3"* and "offline track3" ≤ 0.02 $\Rightarrow \sqrt{Plot "FTK track 2"}$ and "FTK track 3" parameters

Distributions of focused FTK track parameters

Offline software validation (*duplicate track***)**

 \checkmark We check the FTK bank-ID on two matched FTK tracks (with $\Delta R \leq 0.02$)

OResult Number of tracks Entries 14000 \checkmark The value of difference = 0, -1, -15, -16, -17 Mean dai's ploi Std Dev \checkmark "0" : The two tracks are in the same FTK tower 12000 \checkmark "-1" : In \oplus direction, different 1 ID 10000 ✓ "-16" : In η direction, different 1 ID \checkmark "-15, -17": In $\eta \& \Phi$ direction, different 1 ID 8000 $\Rightarrow \sqrt{Many of one of the two tracks should be}$ 6000 removed as "duplicate track" 4000 $\sqrt{0}$ may be due to another cause 2000 For example, FTK fake track ... -5 -20 -15 \Rightarrow We will study it separately

Value of difference of bank-ID on the two FTK tracks

value of difference of bank-ID

Status of the implementation into Athena

- ✓ Albert Kong (Adelaide) has been working on his Qualification Task to implement Offline-seeded Fast Simulation into Athena.
- \checkmark Jira page for the implementation is prepared.
 - <u>https://its.cern.ch/jira/browse/FTKSIM-62</u>
- \checkmark The software is growing in the following link.
 - <u>https://gitlab.cern.ch/akong/athenaprivate1/blob/smearing-21.0/Trigger/TrigFTK/TrigFTK_RecAlgs/src/TrigFTKFastSim.cxx</u>

ICEPPシンポジウム

 \checkmark We plan to test triggers with this software in the next few weeks.

Truth-seeded

変数: lpt,d0,φ,η,z0 事象: 1 個のミューオン (各変数が等確率に分布)

<u>1.再構成率(ヒット共有率50%以上)</u> 2.分解能(Truthとの差)

Truthのlpt, *η*, d0, z0に依存 lpt, *η*, d0, z0の領域ごとに測定し その確率で飛跡の生成を行う

lpt, η の領域ごとにη, z0を2D、 φ, d0, lptを3Dの 正規分布で近似し、乱数をとってパラメータを決定

1. Fast Simualtion を開発する。

2.1本の飛跡からなる事象(1つのミューオンが発生する事象など)について適用し、Full

Simualtion との再構成率や分解能の違いを調べ、必要なら補正する。

3. 複数の飛跡からなる事象(複数の点からミューオンが発生する事象など) について適用し、

飛跡が増えたときの影響を調べる。

4. 実際に物理解析に利用する事象(H! 事象など) について適用し、事象 トポロジーによ

る影響を調べる。

- **5.** 適用してできた**Fast Simualtion** の飛跡をトリガーに利用し**(**一次衝突 点の再構成や トリ
- ガーなど)、Full Simulation との取得率などの違いを調べる。

→1事象につき~10msの時間で生成が可能(※飛跡1000本を仮定)

Truth-seeded

ICEPPシンポジウム

(full simで再構成されたtrackパラメータと完全に一致するtrackを再構成できない)

・full simとの相関がない