ATLAS 検出器を用いた ジェットと横方向消失運動量を 持つ終状態でのグルイーノ探索

安達俊介 (東京大学)

24th ICEPP Symposium

18/02/21 1

LHC: 陽子-陽子衝突型加速	包括	
ATLAS の ある ある ある ある たる たる たる たる たる たる たる たる たる た	p ice	
LHC 27hm		セッション10(座長:長縄 直崇)
	9:30~9:50 (20分)	でのグルイーノ探索 安達俊介(東京大学)
	9:50~10:10 (20分)	bクォーク対に崩壊するヒッグス粒子の証拠 加藤 千曲 (東京大学) Higgs
ATLAS での最近の物理解析	10:10~10:30 (20分)	将来の電子陽子衝突LHeC実験におけるH→bb崩壊結合定数測定の 研究 関根 達侑 (東京工業大学)
のお話(3つ中の1つ)	10:30~10:50 (20分)	ATLAS実験におけるボソン対共鳴探索の最新結果 野辺 拓也 (東京大学) Exotic

14

18/02/21

2

LHC の今までの運転状況

24th ICEPP Symposium

超対称性理論 (SUSY)

- 嬉しい点
- ・荷電中性粒子が混合して 質量固有状態: $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$ ダークマターのよい候補 ニュートラリー
- ・<u>電弱相互作用と強い相互作用</u>の統一 を示唆

- ・SMよりは重い: O(TeV)
- **スフェルミオン**は比較的重い(>5TeV)
- ・グルイーノは他のゲージーノより 生成断面積が2桁以上大きい

超対称性理論 (SUSY)

<u>R-parity</u>保存

仮定

- ・R-parity 保存 (陽子崩壊を制限するため) $R = \begin{cases} +1: SM 粒子\\ -1: SUSY 粒子 \end{cases}$
- 最も軽いSUSY粒子(LSP)が 中性粒子 $ilde{\chi}^0_1$ (ニュートラリーノ)

特徴

18/02/21 7

Background 推定方法

18/02/21 12

Quark/gluon 分離変数

SR \mathcal{O} BDT training

- ・ 多変量解析(BDT) は Bkg と signal の simulation の kinematic 分布を元に、各 event の Bkg or signal らしさを表す変数を作成して くれる(BDT score)
 - 考慮する kinematic 変数は複数 & 変数間の相関も考慮される
- ・ <u>⊿Mass</u> 別に BDT training をする

800 $\widetilde{g}\widetilde{g}$ production, $B(\widetilde{g} \rightarrow qq \widetilde{\chi}_1^0) = 100\%$

600 Direct decay

6€ 400⊨

1 200

000

800

600

400

200.

0

500

貿

 $\zeta_1^{<0}$

18/02/21

14

24th ICEPP Symposium

1000

1500

2000

まとめ

- 比較的軽いと思われるゲージーノの中でも反応断面積の大きく、
 LHCでの探索に適しているグルイーノの探索を行った
- 目標: グルイーノ~2TeV, ニュートラリーノ(x⁰₁)~1TeV の比較的重い x⁰₁に対す る今まで

<u>あまり感度の無かった</u> 領域を探索すること

- 新たに quark/gluon 分離 と 多変量解析(BDT) を利用して significance で
 2.5 倍の改善を得た
- 有意な兆候は得られなかったが以下の領域を新たに探索できた
 - Gluino direct decay : 1.50-1.80TeV @ LSP=1TeV を探索

今まで探索できなかった a few TeV グルイーノ & TeV $ilde{\chi}_1^0$ の探索できた

the gauge outplings appearing in Eq. (75) is modified at 1-loop order [67,71]:

Higgsの質量は $M_h, Q_{\rm RG} = M_S, X_t/M_S = 0, \tan\beta = 20, \mu = 200 \,{\rm GeV}$ (89)輻射補正なしでは 高次輻射補正 ers appearing in the 1-toop corrections appears an afferences in the 2-loop ting on-shell tesuits to mass-independent schemes, see [66,70]. ctions in Eg. (38), 2-hoop threshold corrections 化金色的 标志 标志 法 合适 合 an an e Pading 2-loop correctionsets & controlled by the strong gauge coupling fermion obtained from the effective potential calculation of [31,38]. If the threshold couplings, as in [69], there are further 2-loop torrections to 为 marced by uplings appearing in Proof corrections to λ . For example, Eq. (88) contains s of Fig. 5 are computed in the full theory. We can obtain the SM top Yukawa lution (86). The tree-level relation (75) relating y_t to h_t (as well as similar t \mathbb{P} loop order by squark, gluino, and Higgsino loops [72,73], resulting it a ds blasMuconipiliggs, See [69] for a complete and recent analysis, and [74] for a \bar{K}^0 rrectionstothe running top Yukawa at $m_{\rm S}$. ally sign in the set of the set o the SM running couplings from physical observables such as the top quark uge couplings g_{1,2,3} (Sfermion は重い (>5-10TeV) and the ith NLO parameters is non-negregione. For example, the 2-loop correction to 19/45es into an 0 (GeV) decrease in m_h for $m_h \sim 125$ GeV. In the other difection,

Jet width の jet pr に対する依存性

<u>4本すべてのjetのWtrk</u>を事象選択に組み込む

> どちらも組み込むために多変数解析(BDT)を利用

Quark/gluon 分離

Quark/gluon separation

18/02/21 24/45

Aplanarity

定義

 $M_{xyz} = \sum_{i} \begin{pmatrix} p_{xi}^{2} & p_{xi} p_{yi} & p_{xi} p_{zi} \\ p_{yi} p_{xi} & p_{yi}^{2} & p_{yi} p_{zi} \\ p_{zi} p_{xi} & p_{zi} p_{yi} & p_{zi}^{2} \end{pmatrix}$ Sphericity $S = \frac{3}{2}(\lambda_{2} + \lambda_{3}),$ * p_{i} は i 番目の jet の運動量 Transverse $S_{\perp} = \frac{2\lambda_{2}}{\lambda_{1} + \lambda_{2}},$ 行列 M_{xyz} の固有値を $\lambda_{1}, \lambda_{2}, \lambda_{3}$ とする Aplanarity $A = \frac{3}{2}\lambda_{3}.$

Preselection

Selection	PreDHigh	PreDLow	
Lepton	0 lepton		
E T ^{miss}	> 300 GeV		
Jet 数 (<i>p</i> ⊤>50GeV)	≧ 4	≧ 2	
m eff	> 1400 GeV		

	Selection	PreDHigh	PreDLow
(Z/γ* + jets	1046 (35.7%)	4643 (39.1%)
Main 〈	$t\bar{t}$ + single top	728 (24.8%)	2381 (20.0%)
	<i>W+</i> jets	809 (27.6%)	3183 (26.8%)
	Diboson	200 (6.8%)	625 (5.3%)
	Multi-jet	146 (5.0%)	1053 (8.9%)
	Total	2929	11884

27/45

<u>Signal region (SR) の定義</u>

Signal region	D1	D2	D3	D4	D5
Preselection	PreDHigh				PreDLow
$ \eta(j_{1-4}) $	-		< 2.1		-
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}}$	>0.4	>0.6	>0.6	>0.4	>0.2
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}}$	>0.2	>0.4	>0.4	>0.2	>0.1
BDT score	>0.90	>0.80	>0.80	>0.60	>0.75
Training signal mass $\Delta M(\tilde{g}, \tilde{\chi}_1^0)$	~ 1.5 TeV	$\sim 1 \text{ TeV}$	~ 500 GeV	~ 300 GeV	~ 150 GeV

Signal region	01	O2	03	04	05	
Preselection		PreOHigh			PreOLow	
$ \eta(j_{1-4}) $	-	<	2.1	< 2	2.1	
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}}$		>0.4		>0	.4	
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}}$		>0.2		>0	.2	
Number of jets (N_{jet})	-	-	-	≥ 6	-	
BDT score	>0.80	>0.70	>0.50	>0.00	>-0.15	
Training signal mass $\Delta M(\tilde{g}, \tilde{\chi}_1^0)$	~ 1.3 TeV	~ 900 GeV	~ 500 GeV	~ 200 GeV	~ 80 GeV	

18/02/21

30/45

18/02/21 31/45

- Particle 毎の系統誤差
 - ・ jet の energy scale の誤差
 - ・ jet の W_{trk} の SF の誤差
- MCのbackground毎のmodelingの系統誤差
 - *Z*/*W*+jets, $t\bar{t}$ の MC生成時のパラメータを変えたときの変化分
 - ・ Factorization factor, renormalization factor など

18/02/21 32/45

全SR にかけて total syst. は10-30%程度

SRD2		
Background Prediction	28.3±5.4 [19.1%]	
W _{trk} PDF Gluon	±3.3 [11.9%]	
$\mu(Z+jets)$	±2.2 [8.0%]	
µ(W+jets)	±1.7 [6.1%]	

µ(x): CR で求めた補正係数 µ(x) に対する誤差。
 CRでの data の統計が原因 ← BDT cut を厳しく掛けているため
 W_{trk} PDF Gluon : Gluon の W_{trk} に対する Parton Distribution Function

の系統誤差

VRZ だと統計が少なすぎるので、 BDT 緩めた領域でも check → よく合っている

Validation for W+jets / $t\bar{t}$

W+jets/ $t\bar{t} \mathcal{O}$ VR ($l \rightarrow jet$)

VRW / VRT でも誤差の範囲で合っている

Event display for SRD2 *m*_{eff}>3800GeV

37/45

Validation summary

各SR×各種VR

ズレていても 最大 1.5σ

Conservative な 誤差が付けられている

18/02/21 39/45

120fb-1 での 期待発見感度 3σ

