

LHC-ATLAS実験Run-3に向けた ミューオントリガーロジックの 開発と実装

トリガーシステム

トリガーシステムの重要性

・陽子の衝突頻度は40 MHzだが、記録できるイベントは~1 kHz →興味のある事象を選別して、データ取得を行う

ATLAS実験のトリガーシステム

- ・ハードウェアで実装されたLevel-1 triggerと、
 - ソフトウェアで実装されたHigh Level Triggerの2段階で構成

Run-3ではルミノシティの増加によりトリガーレートが増加するが、

トリガーレートの許容値は変化しないため、閾値を上げるなどの対策が必要となる しかし物理感度のため閾値は低く、トリガー効率を高く維持したい

トリガーの改良を行う

現在のミューオントリガー

- ・衝突点由来でない粒子によるフェイクトリガーが多い(約60%を占める) →磁場の内側の検出器の情報を用いる
- ・低いprのミューオンによるトリガー発行数が多い

Run-3でのエンドキャップミューオントリガー

(高分解能の新検出器)

Run-3でのエンドキャップミューオントリガー

トリガー判定回路 New SL

Optical inputs and outputs (GTX)

- ・光通信用のモジュール
- ・NSWからのデータ受信
- ・トリガー判定結果の送信

FPGA (Xilinx Kintex-7 XCK410T) Xilinx社のFPGA (書き換え可能な集積回路)を 用いて大規模なトリガーロジックを実装できる

Optical inputs

(G-Link)

- ・光通信用のモジュール
- ・TGC BWから

のデータ受信

ミューオントリガー判定(TGCのみ)

TGC(M3)でのミューオンのヒット位置と衝突点を結んだ直線とTGC(M1)の ヒット位置のずれから、磁場中の曲がり具合(dR, dφ)を見積もり、p⊤を計算 7

ミューオントリガー判定(TGC+NSW)

TGC BWのM3の位置とNSWのトラック情報(位置と角度)を用いてp⊤を計算 (ここではTGC BWとNSWのトラックの対応が取れておらず、M3の位置を仮定して計算する)

ミューオントリガー判定(マッチング)

ミューオントリガー判定(最終決定)

トリガー判定ロジックの概要

Coincidence Logicのデザイン

prの計算及びコインシデンスの実装方法は主に2種類

- ・並列で計算 🖙 大規模でリソースを大量に使うが、処理時間が短い
- ・順番に計算 🖙 リソース使用量は少ないが、処理にかかる時間が増加する

Coincidence Logicの動作試験

LHC Run-3ではさらに高エネルギー・高統計での新物理探索を行う

- ・高ルミノシティ環境ではトリガー性能の向上が必須
- ・ミューオントリガーではフェイク事象と低いp⊤のイベントの削減が必要となる →新検出器の導入により、トリガーレートを削減する

トリガー判定用Firmwareのデザイン

- ・一定の処理時間内でトリガー判定を行うようにFirmwareをデザインした
- 内部で作成したテストデータを用いて動作試験を行い、デザイン通りの動作を 確認した

Back up

LHC-ATLAS実験

- LHC(陽子陽子衝突型加速器)
- ・周長 27 km
- ・衝突頻度 40 MHz
- アップグレード後
- $\sqrt{s} = 13 \text{ TeV} \rightarrow 14 \text{ TeV}$
- $L = 2.06 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ $\rightarrow 3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

ATLAS 実験

・LHCの衝突点の1つに設置した汎用 検出器を用いて、標準模型の精密な 検証や標準模型を超えた新粒子の探 索をTeVスケールまで行っている

LHC-ATLAS実験Run-3

LHC Run-3における アップグレード Run-2に比べて

エネルギーとルミノシティ

の改善が予定されている

ルミノシティが増加するが… 物理感度のためpr閾値を低く、トリガー効率は 高く維持することが重要となるが、L1トリガー の許容値(100 kHz)はRun-3でも変化しない

トリガーレートを抑えなければならない

$WH \rightarrow \mu \nu bb$

Run-3では300 fb⁻¹のデータを取得予定 WHの生成断面積 1.51 pb Wのµへの崩壊 10% Hのbbへの崩壊 58%

300×1.51×10³×0.10×0.58 →2.21×10⁴(pT閾値 20 GeV) =2.63×10⁴ →1.34×10⁴(pT閾値 40 GeV)

トリガーメニュー

Ru	ın 1		R	un 2		Rt	un 3		
	Offline $p_{\rm T}$			Offline $p_{\rm T}$			Offline $p_{\rm T}$		
	Threshold	Rate		Threshold	Rate		Threshold	Rate	
	[GeV]	[kHz]		[GeV]	[kHz]		[GeV]	[kHz]	
					
EM18VH	25	130	EM30VHI	38	14	EM25VHR	32	14	
EM30	37	61	EM80	100	2.5	EM80	100	2.5	
2EM10	2x17	168	2EM15VHI	2x22	2.9	2EM12VHR	2x19	5.0	
EM total		270			18			20	1ミューオンで
MU15	25	150	MU20	25	28	MU20	25	15	
2MU10	2x12	14	2MU11	2x12	4.0	2MU11	2x12	4.0	$28 \text{ KHZ} \rightarrow 15 \text{ KHZ}$
Muon total		164			32			19	
**********	*******		*********			• • • • • • • • • • • • • • • • • • •	*******	1	に削減
EM10VH_MU6	17,6	22	EM15VH_MU10	22,12	3.0	EM10VHR_MU10	17,12	3.0	1 - 1337.94
			EM10H_2MU6	17,2x6	2.5	EM10HR_2MU6	17,2x6	1.0	
									•
TAU40	100	52	TAU80V	180	4.7	TAU80VR	180	3.2	
			2TAU50V	2x110	3.8	2TAU40VR	2x100	3.9	
2TAU11I TAU15	30,40	147	2TAU20VI 3J20	2x50,60	5.2	2TAU15VR 3J15	2x40,50	8.1	
2TAU11I EM14VH	30,21	60	2TAU20VI	,		2TAU15VR	,		
—	,		EM18VHI 3I18	50.25.60	2.8	EM13HR 3I13	40,20,50	3.3	
			TAU15VI MU15	40.20	3.8	TAU11VR MU11	35.12	6.4	
TAU15 XE35	40.80	63	TAU20VI			TAU15VR			
_			XE40 3I20	50.90.60	4.4	XE40 3I15	40.90.50	5.0	
Tau total		238			20			25	
175	200	34	I100	200	7.0	I100	200	7.0	
4I15	4x55	87	4125	4x60	3.3	4125	4x60	3.3	
			175 XE40	150.150	8.3	175 XE40	150.150	8.3	
XE40	120	157	XE90	250	10	XE70	200	13	
Iet/E_{T}^{miss} total ^a		306			25			25	LI IOPO C 使える
****	*******		**********			**********	*******	*****	
Topological trigger	5	-			${\sim}5$			~ 20	レートが増加
Total		\sim 800			\sim 100			\sim 100	10

Run-3でのエンドキャップ部ミューオントリガー

ATLAS検出器はφ方向に大きく分けてLarge SectorとSmall Sectorの 2種類のセクターに分けられる

Run-3以降で導入される新検出器

BIS 7/8

現在のBIS 7/8

Monitored drift tube(MDT)

- ・多層のdrift tubeで飛跡の位置と
 方向を測定(半径 ~ 15mm)
- ・ηの分解能 ~35 μm
- ・L1トリガーでは 情報を使えない

Run-3のBIS 7/8

Resistive plate chamber(RPC)

- ・3層のtrigger用検出器
- ・zのチャンネル幅 ~ 25 mm
- ・φのチャンネル幅 ~ 35 mm

small Monitored drift tube(sMDT)

・MDTよりもtubeの半径が小さい (半径 ~7.5 mm)

New Small Wheel

ミューオントリガー判定

ミューオントリガー判定の単位

Trigger Sector

1.0 < |η| < 1.9のTGCを φ方向に48分割したもの(Endcap) または |η| > 1.9のTGCを

R方向に16分割、φ方向に4分割したもの

Sub Sector Cluster (SSC)
 R方向に2つ、
 R方向に2つ、
 φ方向に4つのRolをまとめたもの

TGC-BW Coincidence

TGC-BW CoincidenceではBWのRと¢の情報を用いて ミューオンの位置(Rol)とpтを決定する

RPC BIS 7/8からのデータフォーマット

Data format from RPC BIS7/8 PAD trigger logic board to Endcap Sector Logic

Words (16 bit)	first byte	second byte			
Word-0	comma	comma			
Word-1	candi	date-0			
Word-2					
Word-3	candidate-1				
Word-4	candidate-2				
Word-5					
Word-6	candidate-3				
Word-7	BCID	CRC			

8b/10b encoding x 16 bytes = 6.4 Gbps

Format of a candidate information in RPC BIS7/8 PAD trigger logic board (24 bit/candidate)

Field	eta index	phi index	deta	dphi	2/3 flag	reserved
Num. of bits	6	6	3	3	2	4

(BIS7 & BIS8) = 1 station = 1 PAD trigger logic

3-layers (eta) + 3-layers (phi) 2.5 cm/strip for eta, 3.5 cm/strip for phi

Number of channels in BIS7/8 (not defined yet)

	eta	layer	phi	layer
BIS7	48	3	64	3
BIS8	16	3	64	3

2/3 coincidence should be taken in PAD trigger logic board.

Reason of bit assignment per candidate

Bits		from
eta index	6	(48+16) = 64 channels
phi index	6	64 channels
deta	3	eta difference between two farest layers (-3 to 3)
dphi	3	phi difference between two farest layers (-3 to 3)
2/3 flag	2	Layer 1&2=00, Layer1&3=01, Layer2&3=10, Layer1&2&3=11

New SLは 1 BCにつき 最大4 トラックの 情報を受け取る

このフォーマットは草案段階のもの まだ決定していない

Coincidence Logicに対する要求

- ・p⊤計算するためにRPC BIS 7/8のト ラック情報のデコード処理(25 ns必要)
- ・TGC BWのミューオンの位置情報を用
 いたpT計算
- ・TGC BWで計算されたpTと合わせた
 最終的なpTの決定

の3つの処理を行う

New SLがトリガー判定に使える時間(NSWはデータがNew SLに届く時間が一番遅い)

New Small Wheel	Big Wheel TGC (measured)					
nsec BCs Total			nsec	BCs	Total	-
	1	New Sec	tor Logic			-
Receive signal from NSW		41.4	Receive signals from BW		37	-
Optical $Rx + De$ -serializer	2.5	44	Optical $Rx + De$ -serializer	2	39	
Variable Delay	1	45	TGC R-Phi coincidence (LUT)	2	41	
Decoding/Alignment of NSW data (LUT)	2	47	Waiting for NSW signals		47	
			BW - NSW coincidence (LUT)	1	48	
pT計算はRPC BIS 7/8でも使える時間は同じ 計算するために使える合計時間は3 BC(= 75 ns)			Track selection	1	49	
			$p_{\rm T}$ encoding		50	
			Serializer (128 bit/clk., 6.4 Gb/s) + Optical Tx	2	52	
			Optical fibre to MUCTPI (10 m)	2	54	27

New Small Wheelからのデータフォーマット

Data format from New Small Wheel Trigger Processor to Endcap Sector Logic

Words	first	byte	second byte			
Word-0	com	าma	comma			
Word-1	track-0					
Word-2						
Word-3	track-1					
Word-4	track-2					
Word-5						
Word-6	track-3					
Word-7	ID(4bit)	BCID(12 bit)				

New SLは 1 BCにつき 1本のファイバーで 最大4 トラックの 情報を受け取る

8b/10b encoding \times 16 bytes = 6.4 Gbps

情報	sTGC type	MM type	$\Delta \theta$	ϕ position	η position	spare
ビット幅	2	2	5	6	8	1

New Small Wheel Trigger Processor(NSW TP)は 2本のファイバーでトラック情報をNew SLに送信する

New Small Wheelのセクター

1つのEndcap用New SLは 3つのNSW TPから 最大24 トラックの情報を受け取る

1つのForward用New SLは 4つのNSW TPから 最大32 トラックの情報を受け取る

New Small Wheelとのコインシデンス

コンセプトはRPC BIS 7/8と同じ

NSWの分解能 $\eta \sim 0.005$ 、 $\phi \sim 10$ mrad、 $\Theta \sim 1$ mrad

同様にCoincidence Windowを定義してpr判定

New Small Wheelとのコインシデンス

1 NSW TP

1.5

2.0

8

8

8

Coincidence Window

赤の位置にヒットしたミューオンと コインシデンスをとり得る NSWでのトラック数の最大は16 → 16トラックとコインシデンスをとれるようにする