COMET CDCにおける 宇宙線試験の解析

2017.02.22. 23rd ICEPP Symposium 大阪大学 久野研究室 沖中香里

COMET

COMET = Coherent muon to electron transition ミューオン電子転換過程の探索を目指す

CDC for COMET

- COMET Phase-Iではミューオン電子転換過程の検出に、円 筒型検出器システム(CyDet)を用いる。
- 円筒型ドリフトチェンバー (CDC)はCyDetにおいて重要な 機構である。

CDC for COMET

典型的なトラックディスプレイ (シミュレーション結果より)

Sense wire

Field wire

材質: Au plated W ワイヤー数: 4986 ワイヤー直径:25µm 材質: Al ワイヤー数: 14562 ワイヤー直径:126µm

全てステレオワイヤーとなっている ステレオ角度 64~75mrad ガス ヘリウムベース

Cosmic-ray test for CDC

- KEKの富士実験棟にて、CDCの宇宙線試験を 実施している
- 昨年の夏からデータ取得を開始
- ・データ解析とCDCの性能評価を行なっている

Motivation

- ▶トラッキング,データ解析手法の確立
 - トラッキングの**χ²の評価 XT**カーブの評価

➤CDCの性能評価 位置分解能 検出効率 COMET CDCに求められる性能

運動量分解能200keV/c
 (105MeV電子に対して)

1. ドリフト時間を求める

2. ドリフト時間からドリフト距離を求める

3. ドリフトサークルを描き、飛跡再構成を行う

ドリフト時間を求める。

- TDC分布へのフィッティングからTOを求める。
- 各ワイヤーでのTDC値ーT0=ドリフト時間

信号の時間情報

ガウスフィットして、粒子が通 過した時間**TO**を求める

この**TO**を基準として、ドリフト 時間を求める。

ドリフト距離を求める。

• ドリフト距離とドリフト時間の関係を用いる。

 Garfield でのシミュレーション結果から XT分布を作成、フィッティングによって XTカーブを求める

2回目以降のトラッキング

その前のトラッキング結果から
 得られたXTカーブを使う

ノイズなどを除くためにHit selectionを行う

ノイズなどを除くためにHit selectionを行う

XTカーブを更新

analysis

analysis to check tracking

▶トラッキングの評価

- 得られた**XT**カーブの評価
- トラッキングのχ²の評価

▶CDCの性能評価

- 位置分解能
- 検出効率

χ^2

- トラッキングの χ^2 = トラッキングの精度に関わる
- イベントの選択に χ^2 のカットを入れている

$$\chi^{2} = \sum \frac{(residual)^{2}}{\sigma^{2}}$$
* σ ...位置分解能

Residual(=残差)…ドリフト距離 - DCA DCA(distance closest approach) =トラックとワイヤーの距離 ドリフト距離 =ドリフト時間とXTカーブから求めた距離

- トラッキングの χ^2 =トラッキングの精度
- イベントの選択に χ^2 のカットを入れている

XT Curve check

- トラッキングを行う度に、DCAとドリフト時間の関係からXTカーブを描く。
- ・繰り返しトラッキングを行うことで、より真に近いXTカーブが得られる。

Residual distribution

ドリフト時間から求めたドリフト距離と トラックとワイヤーの距離(=DCA)の残差分布を作成。

 $\sigma = 位置分解能 + トラッキングエラー$

18

Performance check for CDC

CDCの位置分解能をレイヤー、印加電圧(HV)ごとに求める。

- ►HVが1850V,1800Vの時、約200µmの 位置分解能を持っている
- ▶ 端のレイヤーほど位置分解能が 悪い →真ん中のレイヤーに比べて、 トラッキングエラーが大きいため。

▶ <u>HVが高いほど位置分解能が良い</u>

Relation between HV and resolution

Performance check for CDC

CDCの各レイヤーでの検出効率を求めた。

21

Performance check for CDC

CDCの各レイヤーでの検出効率を求めた。

Hit Efficiency (レイヤーごと)= あるレイヤー上でヒットしたイベント数 トラッキングが成功したイベント数

 >HVが低いとヒットする確率が 下がる
 →HV低いほどGainが低い
 Gainが小さいと、信号が認識されない

summary

- 現在COMET Phase-Iに用いるCDCの性能評価のため、宇宙線試験を 行なっている。
- 解析のためのコードを開発し、飛跡再構成を行なった。
- ・再構成された飛跡より、残差分布のσはHV1850V時で約200μmと なった。
- 検出効率及び残差分布の*o*は印加電圧に依存している。

<今後>

- Z依存性も考慮した飛跡再構成を行う。
- トラッキングエラーを考慮した上で位置分解能を求める。

Back up

- トラッキングを行う度に、DCA とドリフト時間の関係、XT カーブを描く。
- 繰り返しトラッキングを行う ことで、より真に近いXTカー ブが得られる。

HV realation

• HV:efficiency

mu-e conversion

→Charged Lepton Flavor Violation=cLFV have never been observed.

- Standard Model
 Branching ratio ~10⁻⁵⁴
- Beyond SM
 - Branching ratio $\sim 10^{-15}$

Research for New Physics

CDC for COMET

From 2015, we have strung wire for CDC and checked the tension all wire.

2016.Summer we finish to construct CDC!

chi square

Reduced chi square

1850V (after 3times iteration)

XT relation

1850V (after 3times iteration)

Residual

1850V (after 3times iteration)

35

XT Curve check

