CMSの最新の結果 & H → ττ を用いた ヒッグス粒子の CP 測定

Yuta Takahashi (CERN) Seminar @ ICEPP 2 Oct. 2015

1

英語が時々混じってしまうと思います … いつでも止めてください (わからない時も)

Outlook

- CMS の status & 13 TeVにおける初期の結果
- Tau ID の性能向上
- H → ττ を用いたヒッグス粒子の CP 測定について

CMS検出器

CMS : 直径15m x 長さ22m (ATLAS : 直径 25m x 長さ44m)

強いソレノイド磁場 (3.8T) + 全吸収型電磁カロリメーター → e/γ に特化 : σ_{mγγ}/m_{γγ} ~ 0.8% (cf. ATLAS ~ 1.2%)

LS1 における upgrade

CMS magnet (cryogenics) issue

Compressor における圧力遷移

- 圧縮機に何かが混入したときにみられる現象 (おそらく機械油)
- TS 中にフィルターを交換したが目立った改善なし? (原因特定に至らず)
 → なるべくLHC と足並みを揃えて cleaning を実施
 → 大規模な cleaning, 部品交換を年末に予定

Selected physics results @ 13TeV⁷

<u>http://cms-results.web.cern.ch/cms-results/public-results/</u> <u>preliminary-results/</u> (preliminary な結果) <u>http://cms-results.web.cern.ch/cms-results/public-results/</u>

publications/ (publications)

- Charged hadron multiplicity v.s η (FSQ-15-001)
- Di-jet bump search (EXO-15-001)
- Ttbar cross-section
 - Di-lepton (TOP-15-003)
 - Semi-lepton (TOP-15-005)
 - Differential (TOP-15-010)
- Single-top (TOP-15-004)
- Ridge analysis (FSQ-15-002)
- W, Z inclusive cross-section (SMP-15-004)
- W', Z' search (DP-2015-037, DP-2015-039)

Soft-QCD Hard-QCD EWK

Charged Hadron multiplicity V.S η

- 13 TeV における初の論文 (データ取得時間:1.5時間)
- < μ > ~ 5%, B = 0T (low p_T の charged hadron に感度)

di-jet resonance search

9

di-jet resonance search

2 jets ($p_T > 60$ and 30 GeV) & $|\Delta \eta_{ij}| < 1.3$ (t-channel を suppress)

Color Octet Scalar (S8)

2.7

2.6

10

2.3

2.0

ttbar cross-section

- 精密測定 + ほとんどの物理解析において主な背景事象
 σ_#(13TeV) ~ 800pb → 1Hz @ L = 10³⁴ (/cm²s) → Top-factory
- Di-lepton, leptonic + jet を使用
- Opposite-sign e + muon (p_T > 20 GeV)
- \geq 2 jets (p_T > 30 GeV)

CMS-PAS-TOP-15-003, TOP-15-005 11

cf) $\sigma_{tt}^{NNLO} = 832^{+40}_{-46} \text{ pb}$

Spectacular ee event

Colins-Soper angle が negative (DY bkg. は通常 positive)

Outlook

- CMSの status & 13 TeVにおける初期の結果
- Tau ID の性能向上
- H → ττ を用いたヒッグス粒子の CP 測定について

Tau ID plays an important role

Run-1 : Tau ID efficiency : 50 – 60% @ 1% fake rate

Run-2 { • 高い ID efficiency @ できるだけ低い fake rate • 高い運動量領域まで ID efficiency を保持したい

Run-1における τ_h ID @ CMS

 π

3. 本物の tau と QCD jet を分けるため、 isolation cone における エネルギー損失 < 2 GeVを要求

Run-1 τ_h ID の限界

_{τh} ID の性能向上へ

e⁺/e⁻ が strip の外に出る確率は $p_T(e)$ に依存 \rightarrow Low p_T のelectron ほど磁場に曲げられて外に出やすい $\rightarrow p_T(e)$ に応じて strip size を動的に変化 (dynamic strip)

Performance の改善

最適化して ...

Outlook

- CMSの status & 13 TeVにおける初期の結果
- Tau ID の性能向上
- H → ττ を用いたヒッグス粒子の CP 測定について

Why Higgs CP is interesting ?

- SM:1つのヒッグス粒子, CP固有状態, CP even
- BSM model
 - MSSM: 3つのヒッグス粒子, CP固有状態, even (h⁰, H⁰), odd (A)
- 一般的に
 - 見つかったヒッグス粒子は必ずしも CP 固有状態である必要なし
 → CP even と odd が mix した状態として存在

$$|H\rangle = \cos \alpha |\mathrm{even}\rangle + \sin \alpha |\mathrm{odd}\rangle$$

 $\alpha : CP \text{ mixing angle} \begin{cases} SM : \alpha = 0 \\ CP \text{ odd } : \alpha = \pi/2 \\ Max. \text{ mixing } : \alpha = \pi/4 \end{cases}$

CPの測定(混合角の測定)=新しい物理の間接的探索

What do we know about CP?²³

- ヒッグス粒子の崩壊過程を使う
 - $H \rightarrow \gamma\gamma : C = +1$
 - ZZ, WW, γγ における運動学的分布から特定の J^Pを仮説検定

This is not the end of the story

Signal rate (μ -value) から α に対して制限をつけることも可能だが Signal rate ∝ f(α , Λ) なので Λ の仮定が必要 (model dependent)

On the other hand – fermionic coupling

- CP even も odd も tree-level で ff に結合できる
 CP even も odd も最終的な分布に同等に寄与
- Hypothesis test → NP に対する assumption なしに CP を probe できる (model independent)

結論: ヒッグス粒子の CP は、fermionic coupling を使うべし

Fermionic coupling を用いた CP 測定手法²⁰

Tau polarization を用いる手法

H → ττ において、tau 崩壊面の 角度差 Δφ を見る (high pileup では特に困難)

Gluon fusion + 2 jets を用いる方法 (I want to do this)

- Polarization を用いた手法 よりも簡単
- ヒッグス粒子の崩壊に 無関係 (combinable)
- あまり study されていない

VBF は感度なし (IMI² が α に依存しない)

Gluon fusion + 2 jets includes "not-interesting" events

27

Feasibility study using H $\rightarrow \tau \tau^{28}$

πτ: 2 jets phase space で
高い S/N でヒッグス粒子をタグできる

decay	Obs. μ-value (run-1) @ 2 jets
$H \rightarrow \gamma\gamma$	1.514 +0.551 -0.476
$H \rightarrow WW$	0.623 +0.593 -0.479
$H \rightarrow \tau \tau$	0.948 +0.431 -0.379
$H \rightarrow ZZ$	1.549 ^{+0.953} -0.661

- Run-1 における H $\rightarrow \tau\tau$ と同じ event selection
- ≥ 2 jets → leading, sub-leading を使って Δφ(jj) を計算
- VBF-like な selection をかけて gluon splitting の事象を除く
 _ ∆R(jj) > 0.6, mjj > 200 GeV

Sensitivity check using run-1 data

29

Future projection

50 fb⁻¹, 14TeV

α > 0.9 rad を 3σ で
 σ
 σ
 σ

まとめ

- CMS is in full swing (except for magnet)
 - Highly operative after upgrade (both h/w and s/w) during long shutdown period
 - Cryogenics issue is still there but believed to be solved soon
- New tau identification is developed and will improve physics performance with tau in run-2
- Higgs CP property can be a nice probe for NP
 - Fermionic coupling will allow model-independent measurement of the Higgs CP property
 - Feasibility study using run-1 data with $\tau\tau$ final state suggests that run-2 data will provide interesting results