

Dark Matter Searches with PandaX Experiment

Ning Zhou (周宁) Shanghai Jiao Tong University

2023-10-02

Dark Matter Direct Detection

- Incoming dark matter from the universe
- Scattering with target atom (nucleus and electrons)
 - Goodman and Witten (1985)
 - Energy deposit in the detector

PandaX: dual-phase xenon TPC

- Paired scintillation (S1) and ionization (S2) signals
 - Precise energy measurement and 3-D position reconstruction
 - Discrimination of nuclear recoil and electron recoil signals

PandaX Detectors

2009

- Increasing the detector sensitive target volume
- Lowering radioactive background

PandaX-4T (3.7 tonne)

2020-

PandaX-4T Experiment

- Sensitive volume: 3.7 tonne xenon
- 800m³ high-purity water shielding tank
- Commissioning started in 2020/11

Physics Run

2020/11 – 2021/04	Commissioning (Run 0) 95 days: ~0.6 tonne-year	
2021/07 – 2021/10	Tritium removal xenon distillation, gas flushing, etc	Physics Rup
2021/11 – 2022/05	Physics run (Run 1) 164 days: ~1.0 tonne-year	
2022/09 – 2023/09	CJPL B2 hall construction xenon recuperation, detector upgrade	CIPL-II B2 Hall
Expect to resu	me by the end of 2023	Detector Upgrade

Detector Response Model

Detector response to DM signals

Signal type	Response model parameters	
DM-nucleon scattering Nuclear Recoil Signal	 Energy reconstruction Light yield 	
DM-electron scattering Electron Recoil Signal	 Charge yield Re-combination & fluctuation 	

Various calibration approaches

Туре	Source	Method
Electron recoil	^{83m} Kr/ ²²⁰ Rn	injecting gas source
Nuclear recoil	²⁴¹ Am-Be	external source
Nuclear recoil	D-D neutron	external source

Energy Reconstruction

- Light (S1) + Ionization (S2)
- Energy resolution @41.5keV: 6.8%

$$E = 13.7 \text{eV} \times \left(\frac{\text{S1}}{\text{PDE}} + \frac{\text{S2}_{\text{b}}}{\text{EEE} \times \text{SEG}}\right)$$

8

Nuclear Recoil Calibration

Neutron sources

- Deuteron-deuteron and AmBe neutrons
- Combined fitting to get the parameters
 - Light yield
 - Charge yield
 - Fluctuations

Electron Recoil Calibration

- Inject ²²⁰Rn into the detector, uniformly distributed
- Leakage of electron recoil events below NR median
 - $6/1393 = 0.44 \pm 0.18\%$, response model agrees with data

Background composition

Component	Nominal (evts)	
³ T (from fit to data)	532 (32)	
Flat ER [*] (18-30keV side band)	492 (31)	
Rn	347 (190)	
Kr	53 (34)	
Material	40 (5)	
pp neutrino	37 (8)	
Xe-136	31 (6)	
Xe-127	8 (1)	
Neutron	0.9 (0.5)	
Neutron-X	0.2 (0.1)	
Surface	0.5 (0.1)	
Accidental	2.4 (0.5)	
B8	0.6 (0.3)	
Sum	1037 (45)	

- Background level at low energy region is 1/4 of PandaX-II
 - Radon is reduced to 1/6
 - Kr is reduced to 1/20
 - Residual tritium is observed

Signal ROI

¢.

- Fiducial volume: 2.67 tonne xenon
- Exposure: 0.63 tonne-year
- Signal selection criteria
 - S1: 2 135 PE
 - S2raw: > 80 PE
 - S2 < 20000 PE
- Data: 1058 events observed
 - 6 events below NR median, consistent with expectation of 9.8 ± 0.6 events

DM-nucleon Spin-independent Scattering

- Sensitivity improved from PandaX-II final analysis by 2.6 times at 40 GeV/c²
- Dived into previously unexplored territory!

PRL 127, 261802 (2021), Editors' suggestion

Luminance of Dark Matter

Residual weak EM properties: coupling with photons

tree-level

higher-order loop-level

Photon-Mediated Interaction

- Various nuclear recoil signatures
- Dedicated searches of these EM properties

Results from Xenon Recoil Data

- First experimental constraints on DM charge radius
 - 4 orders of magnitude smaller than neutrino
- Strong constraints on other EM properties
 - up to 3 10 times improvement

<u>Limits on the luminance of dark matter from xenon recoil</u> <u>data</u>

A direct search for effective electromagnetic interactions between dark matter and xenon nuclei that produce a recoil of the latter is carried out and the first constraint on charge radius of dark matter is derived.

Xuyang Ning, Abdusalam Abdukerim ... Yubo Zhou

Article 17 May 2023

Table 1 | Comparison of electromagnetic properties

	dark matter	neutrino	neutron
Charge radius (fm ²)	<1.9×10 ⁻¹⁰	[-2.1,3.3]×10 ⁻⁶ *	-0.1155 *
Millicharge (e)	<2.6×10 ⁻¹¹	<4 ×10 ⁻³⁵ *	(-2±8)×10 ^{-22*}
Magnetic dipole (µ _B)	<4.8×10 ⁻¹⁰	<2.8×10 ⁻¹¹ *	-1×10 ^{-3*}
Electric dipole (ecm)	<1.2×10 ⁻²³	<2×10 ⁻²¹ ′	<1.8×10 ⁻²⁶ *
Anapole (cm ²)	<1.6×10 ⁻³³	~10 ^{-34 ‡}	~10 ^{-28 §}

* Datas are taken from PDG [32]

† Taken from [31] ‡ Taken from [33]

§ Taken from [34]

Nature Vol. 618, Issue 7963, 47-50 (2023)

DM-electron Scattering

- DM and neutrino may have a connection
 - Behave similarly as a heavy neutrino
 - Mono-energetic recoil energy

Bump-hunting on the electron recoil spectrum

 $\chi e \rightarrow e \nu$

Cross-check XENON1T Excess

- Effective field models
 - vector, axial-vector
- Result doesn't support the excess

Physics News and COMMENTARY

Potential Dark Matter Signal Gives Way to New Limits

October 13, 2022

Results from two leading dark matter experiments—XENONnT and PandaX-4T—rule out an enigmatic signal detected in 2020 and set new constraints on dark matter particle candidates consisting of light fermions, respectively.

Feature on: E. Aprile *et al.* (XENON Collaboration) Phys. Rev. Lett. **129**, 161805 (2022)

Dan Zhang et al. (PandaX Collaboration) Phys. Rev. Lett. **129**, 161804 (2022)

PRL 129, 161804 (2022) **Editors' Suggestion**

Tritium Removal

- Preliminary estimation of tritium level for Run 1
 - Fitting S1 spectrum, keeping S2 blinded
- Extensive tritium measures planned for next run (Run 2)

Period	Run0 Set 4	Run0 Set 5	Run1
Tritium Counts/day/tonne	3.0 ± 0.3	1.6 ± 0.2	0.4 ± 0.1

Reducing Detection Threshold

- Ionization-only (S2-only): no scintillation signal (S1) requirement
 - ROI S2 [60, 200]PE: threshold down to ~100 eV (from ~1 keV)

Ionization-only ROI

- Key challenge: background components
 - No full picture in previous xenon-based experiments
 - Conservative results only

XENON1T PRL

Ionization-only Data

- First complete understanding of all the main backgrounds
 - Micro-discharging (MD)

Small charge, strong run-condition dependence

- Cathode activity

≻ Large charge, large pulse-shape width

- Blind analysis of 0.55 tonne-year exposure
 - 105 events
 - Best-fit background: 95.8 \pm 11.3

Constraints on DM-electron Scattering

- Most stringent constraints are derived
 - DM-electron interaction with heavy mediator, 2×10^{-41} cm²
 - Freeze-out and Freeze-in

PRL 130, 261001 (2023), **Editors' Suggestion**

Cosmic-ray Boosted Dark Matter

- Light DM with cosmic ray boosting
- New signature: diurnal modulation due to earth shielding

S.-F. Ge, J. Liu, Q. Yuan, NZ, PRL 126, 091804 (2021)

Diurnal Modulation Search

PandaX-II data

- Using events below NR median: 25 events (expected 26.6 background)
- Extend the DM search window to sub-GeV
 - Expand to the region beyond the astrophysical and cosmological probes

New results from Super-K

- 20 years' data from Super-Kamiokande PRL 130, 031802 (2023)
- Directional detection of cosmic-ray boosted DM

Future plan: PandaX-xT

- Next generation liquid xenon experiment
 - with >30 tonne sensitive volume
 - decisive test on WIMP with 200 tonne-year

Summary

- PandaX-4T is exploring various types of DM
- Novel probes are tested to expand the physics reach
- Run 2 data-taking will start soon
- Planning future PandaX-xT project

Thank You!

PandaX

- PandaX: particle and astrophysical xenon detector
 - dark matter, Majorana neutrino, astrophysical neutrino

