Improving the abilities of HPGe detectors with machine learning and applications to positron-based spectroscopy

Randall Gladen

Work performed mostly at The University of Texas at Arlington

Outline

Motivation (A quick review)	∫ I.	Positron annihilation-induced Auger electron spectroscopy (PAES) and Doppler-broadening spectroscopy (DBS)
	 II.	The recently developed positron beam and electron time-of- flight & gamma spectrometers
Direct applications	∫ III.	Conventional and machine learning-based methods for extracting <i>timing</i> information from HPGe detectors
	L IV.	Conventional and machine learning-based methods for extracting <i>energy</i> information from HPGe detectors
And beyond	{ V.	Introducing the ability to estimate source direction with HPGe detectors using machine learning

Positron Annihilation-Induced Auger Process

If the positron energy remains below the work function of the material, impact-induced secondary electron contributions will be suppressed

Annihilation Gamma Doppler Shift

Example Spectra

Time-of Flight Positron Annihilation-induced Auger Electron Spectroscopy

V. A. Chirayath, et al., Nat. Comm. 8 (2017) 16116

Digital Pulse Analysis

Pre-

A diagram of the software developed to perform Gammaelectron coincidence. The digital pulses are acquired by a 12bit, 1.25 GS/s, 200 MHz Lecroy oscilloscope.

Gamma–Auger Coincidence

The original goal of the experiments

Gamma–Auger Coincidence

The spectrum

Gamma–Auger Coincidence

The analysis/results

Glenn F. Knoll. *Radiation Detection and Measurement (4th)*

Extraction of Gamma Timing

Extrapolated Leading Edge Timing (ELET)

Extraction of Timing Information | SOM

Self-Organizing Map

Representative Pulses

-100

-50

Time (ns)

Amplitude (mV)

Fast rise times

Extraction of Gamma Timing | SOM

Extraction of Timing Information | SOM

Self-Organizing Map

Extraction of Timing Information | SOM

Positron-induced secondary electron peaks

Both peaks are comprised of the same data (raw pulses from the HPGe and MCP detectors) in a real experiment (i.e., not in a setup specific to this technique), but with different analysis procedures.

Extraction of Gamma Energy | Conventional

Moving Window Deconvolution

1.39 keV FWHM at 356 keV

$$[n] = D[n-1] + P[n] - P[n-1] + \frac{P[n-1]}{\tau}$$

Extraction of Gamma Energy |ANN

First Attempts

1.44 keV FWHM at 356 keV

Extraction of Gamma Energy | ANN

Locating and labeling peaks

Extraction of Gamma Energy | ANN

Training ANN with only noisy peaks

arXiv:2010.11929

Extraction of Gamma Energy | ANN

Future Work?

Architecture:

First attempts were done with CNN, but convolutional networks are phasing out in favor of transformers (not entirely phased out yet, of course).

Transformers? Vision Transformers?

Input: Raw pulses? Spectrograms?

> Inspired by "Noise2Noise" (2018) Similar techniques have been experimented with in several different fields

 L_1

35.75 dB

arXiv:1803.04189

Input $(p \approx 0.25)$ 17.12 dB

26.89 dB

 L_2

Clean targets 35.82 dB

Ground truth PSNR

With Coaxial HPGe Detectors

Experimental Setup

Overhead view of a coaxial HPGe detector (grey) in an LN2 dewar (beige)

The red box is a Ba-133 source

MCNP Simulation Results

Another application of SOM

12x12 SOM Sample Hits

Clustering pulses based on shape

SOM Maps (1000 pulses)

Clustered Pulses (most active neuron)

Estimating position based on SOM patterns

