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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-
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24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 17

Shower Dataset
Charged pion showers

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Pion showers significantly more complex

Photon showers 

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Advancing Generative Modelling of Calorimeter Showers 
on Three Frontiers

Erik Buhmann , Sascha Diefenbacher , Engin Eren , Frank Gaede , Gregor Kasieczka , William Korcari , Anatolii Korol , Claudius Krause , 
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Consistency Model

Speed-up using the CaloClouds Diffusion & Consisteny Models

Sampling from the CaloClouds II Model (Normalizing Flow & Diffusion Model)

Fast & Scalable: Point Cloud Diffusion arXiv:2305.04847 
arXiv:2309.05704

Sampling

Shower 
Flow

PointWise 
NetE

!(0, T2I)

 Ez,i, Nz,i Generated Shower
Calibration

 diffusion 
steps

NtN

Ncal

Energy Flow

Flow 2

Flow 1

Flow 30

Rescaling

E

Shower
Layer-to-Layer Flow Model (L2LFlows) L2LFlows improves cell energy distribution

GeV

GeV

GeV

Geant4 simulation

L2LFlows model

           Fidelity Enhancement: Layer-wise Normalizing Flow
arXiv:2302.11594

Bounded Information Bottleneck Autoencoder (BIB-AE)

Flexible Generation: Energy & Angle Conditioning
arXiv:2303.18150 

Generation of showers with fixed angles and fixed energies

Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].

Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation 20

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as

Generative progress

Overview

See how better generative architectures 
improve learning of physics distributions

Introduce new generative 
architectures as needed




Simulation target

• Shower in ILD Electromagnetic Calorimeter


• 30x30x30 cells (Si-W)


• Photon energies from 10 to 100 GeV


• Use 950k examples (uniform in energy) 
created with GEANT4 to train

ILD Detector



Simulation target

How to represent?


Tabular data:  
Easy, insufficient for high-dimensions




Simulation target

How to represent?


Tabular data


Fixed grid: Voxel image 
(allows using e.g. convolutional networks)




Generative Adversarial Networks

At (Nash) equilibrium:  
Generator produces realistic examples 
Discriminator is maximally confused

Training objective: 
Binary cross entropy
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder

Penalty so mean/std are close to unit Gaussian
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Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Bounded Information 
Bottleneck AE

BIB-AE (GAN + VAE)

Generative Architecture
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•Combines VAE and GAN approaches
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Cell Energy Spectrum
Photons Pions

BIB-AE (GAN + VAE): 
1st simulation of Photon 
shower in 27k cell 
calorimeter
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Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Generative progress

Buhmann, .., GK et al 2005.05334

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

Progress



Generative progress
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Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Handle more complex 
pion showers in 
hadronic calorimeter

Buhmann, .., GK et al 2112.09709;
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Cell Energy Spectrum
Photons Pions
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Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 
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Shower Dataset
Charged pion showers

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Pion showers significantly more complex

Photon showers 

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48
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Photon showers 
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•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle
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•30×30×30 / 25×25×48
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Generative progress

Extend to condition on 
angles

Diefenbacher, .., GK et al 2303.18150
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
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subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

with
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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to be, as they are always used in forward mode — the overall block which
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For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp





x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
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Composition of bijective functions 
remains bijective


Chain rule: Jacobian determinant of 
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Sample points from training data
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A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
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log likelihood of data


Transform into latent space and 
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in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
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Training objective: Minimise negative 
log likelihood of data


Contribution from Jacobian 
determinant
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Only scratched the surface: 
more constructions available


 
Exact learning of likelihood 
→ Better generative fidelity 
→ Can evaluate likelihood of 
data


More complex  
→ Slower, choice of fast direction
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Non-linear elementwise transform
Problem: no mixing of variables

Affine combination of variables
Problem: limited representational power

Non-linear transforms
Problem:  hard to compute inverse

Architectures that allow invertible 
non-linear transformations.

Continuous flows depending on ODEs or SDEs

Invertible residual networks 

Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>

L



Flows for detector simulation

How to do flows for 
high-dimensional  
data?


L2LF����, we show the absolute relative deviation to G����4 for both generative networks per
voxel:

L2LF����relative
8, 9 :=

���L2LF����overlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.1)

BIB-AErelative
8, 9 :=

���BIB-AEoverlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.2)

where 8 and 9 denote voxel positions. We observe that in general the generative models capture the
overlay quite well, with L2LF���� having smaller deviations from G����4 than the BIB-AE.

To compare the performance of the generative models in more detail, we start by looking at
the showers on the voxel level. Figure 5 shows the distributions of voxel energies as well as the
sparsity, i.e. the number of non-zero voxels per shower. One characteristic that repeats itself in
several histograms is that the BIB-AE is not capable of capturing the full G����4 distribution,
which can e.g. be seen in the sparsity plot. L2LF���� is much better in this regard. Further, the
energy deposited around the energy of a minimum ionizing particle (MIP) in the voxel distribution
is better modeled by L2LF���� in comparison to the BIB-AE, which slightly overshoots it. While
L2LF���� does not learn the G����4 distribution perfectly, it learns the distributions much better
than the BIB-AE.

For ⇢inc 2 {20, 80} GeV, Fig. 6 shows the energy profiles in G-, H- and I-direction. As can be
seen, the larger the incident energy ⇢inc, the more the maximum in the energy profiles shifts to later
layers, which both the BIB-AE and L2LF���� are able to learn. Deviations for both simulators
mainly exist in a few initial and final layers.

The distributions in Fig. 7 show the total energy depositions (⇢depos :=
Õ

8 ⇢8), both for
continuous incident energies uniformly distributed in [10, 100] GeV (left) and for discrete incident
energies ⇢inc 2 {20, 50, 80} GeV (right). In both of these distributions we observe that L2LF����
is much closer to the G����4 distribution than the BIB-AE.

Figure 8 shows the linearity5 (and its relative deviation to G����4) as well as the width (again
with its relative deviation).6 For the linearity, the relative deviation is for the BIB-AE maximally

5This does not correspond to the actual calorimeter linearity or resolution, as the increased thickness of the last 10
ECal layers is not calibrated for. It is, however, still a vital means for determining the performance of the generative
approaches.

6The linearity `90 is defined as the mean deposited energy over the ECal for discrete ⇢inc of a 90% subset of the
samples that have the smallest range. The width d90 is defined as d90 := `90/f90, where f90 is the standard deviation
of the 90% subset of the energy deposition samples that have the smallest range.

Figure 3: BIB-AE–generated shower (left), G����4 test shower (middle) and L2LF����-generated
shower (right). The black arrow indicates the (hypothetical) direction of an incoming particle.

– 8 –

10x10 cells / layer 
30 layers

23
02

.1
15

94

By directly learning the 
likelihood, flows should 
be of higher fidelity than 
GAN/VAE.


But inefficient scaling 
with data dimension. 



Flows for detector simulation

ENERGY DISTRIBUTION FLOW

...

30-dim. base 
distribution

pr
ep

ro
ce

ss
in

g

Training direction

...

...

...

RQS

...

...

MADE block

permut. 

Einc

...

RQS

MADE block

...
permut. 

...

Einc

Generative direction

GEANT4 energies
Ei

Sampled energies
Ei

inverse logit 
transform

Figure 1: Architecture of the ������ ������������ ����.

3.2 ������ �����

Next, we turn to the second step of the generation process: generating shower shapes conditioned
on the total incident energy and the total deposited energies in each layer. Our overarching goal
here, as in the original CaloFlow, is to learn

?(I0, . . . ,I29 |⇢0, . . . , ⇢29, ⇢inc) (3.3)

where the ECal voxel energy depositions of layer 8 are denoted by I8 2 R100. Unlike in Sec. 3.1, no
cutoff is applied to the voxel energy depositions used in the ������ ����� training. This prevents
potential sharp edges in the voxel data, which would be caused by the cutoff, from interfering with
the training of the ������ �����. (For the ������ ������������ ����, this issue was already
circumvented, as each layer energy is the aggregate of multiple voxels, lessening any potential
edges.) The voxel energy depositions are preprocessed similarly to the layer energies used in the
������ ������������ ����. The precise nature of the preprocessing is outlined in App. B.

In the original CaloFlow, a single NF was trained on all the calorimeter voxels of every layer
together, to directly learn (3.3). Since the number of parameters of a single NF scales quadratically
with the dimensionality 3 of the samples, the single-NF approach of original CaloFlow applied to
the ILD dataset (which has 3 = 3000) would lead to a prohibitive number of parameters (> 1B).
One can attempt to reduce the number of parameters by decreasing the number of MADE blocks
as well as RQS bins, but this leads to a significantly reduced fidelity.

To reduce the number of parameters without sacrificing quality, our key idea here is to instead
train one NF per ECal layer. Since the evolution of a shower in layer 8 depends on what happened
in the previous layers, NF 8 has to be conditioned on the voxel energy depositions of the previous
layers. In other words, we endeavor to train 30 separate NFs to learn the distributions:

?8 (I8 |I0, . . . ,I8�1, ⇢0, . . . , ⇢29, ⇢inc), 8 = 0, . . . , 29 (3.4)

If each distribution ?8 could be learned perfectly, then they could be multiplied together to recon-
struct the full joint distribution (3.3). This would be in effect its own kind of autoregressive model.
However, in later layers, there are a lot of conditioning features, and we observed that attempting to
model the full conditional likelihood (3.4) resulted in suboptimal performance.
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Figure 2: Architecture of the ������ �����. As mentioned in the main text, NF 0 does not make
use of an embedding network for the conditioning. The postprocessing is explained in detail in
App. B.

NF 8 Context features Context shape
0 ⇢0, ⇢inc [# , 2]
1 I0, ⇢1, ⇢inc [# , 102]
2 I0, I1, ⇢2, ⇢inc [# , 202]
3 I0, I1, I2, ⇢3, ⇢inc [# , 302]
4 I0, I1, I2, I3, ⇢4, ⇢inc [# , 402]
� 5 I8�5, I8�4, I8�3, I8�2, I8�1, ⇢8 , ⇢inc [# , 502]

Table 1: For the conditioning on the previous 5 ECal layers, i.e. =cond = 5, this table shows the
context features each NF gets and their shape before being fed into an embedding network. Here,
# denotes the batch size used during training or sampling.

modified to operate on the photon showers with shape 30 ⇥ 10 ⇥ 10 by retraining it. The BIB-
AE consists of an encoder and a decoder pair, which is trained using a set of adversarial critics.
The BIB-AE generation process employs an additional post-processing step and a Kernel-Density-
Estimation–based latent sampling, as described in Ref. [18]. The BIB-AE model and PostProcessor
model have a combined total of 9.3M parameters, while the critics used to train them have an
additional 3.7M parameters.

4.1 Distributions

Figure 3 shows a single test shower of G����4 as well as a generated shower from the BIB-AE
and L2LF���� each. All single showers have an incident energy ⇢inc ⇡ 50 GeV. We see that the
individual shower from L2LF���� looks reasonable, with a broadly realistic morphology of voxels
and energy depositions.

Figure 4 shows the overlay of 95k showers, i.e. the mean of the voxel energies of 95k showers.
In order to create two-dimensional plots, the voxel energies are summed over the I-, G- or H-axis.
For G����4, the 95k test showers are used. To highlight potential differences for the BIB-AE and

– 7 –

How to flows for 
high-dimensional  
data?


Split!

23
02

.1
15

94



Generative progress

Better convergence of 
normalising flows:

→better fidelity


Individual flows per 
layer for efficiency

Diefenbacher, .., GK et al 2302.11594

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 17

Shower Dataset
Charged pion showers

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Pion showers significantly more complex

Photon showers 

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Advancing Generative Modelling of Calorimeter Showers 
on Three Frontiers

Erik Buhmann , Sascha Diefenbacher , Engin Eren , Frank Gaede , Gregor Kasieczka , William Korcari , Anatolii Korol , Claudius Krause , 
Katja Krüger , Peter McKeown , Imahn Shekhzadeh , and David Shih

1 2 3 3 1 1 3 4
3 3 5 6

✉  erik.buhmann@uni-hamburg.de

Universität Hamburg | Lawrence Berkeley National Laboratory | Deutsches Elektronensynchotron (DESY) | Universität Wien | Université de Genève | Rutgers University1 2 3 4 5 6
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speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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How to GAN with it
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Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.
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Figure 5: Same as Fig. 3 but for the JetNet30 top quark dataset.

Jet class Model
W M

1
( x10�3 )

W P
1

( x10�3 )
W EFP

1
( x10�5 )

Gluon
Truth 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.3
EPiC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7

Light
quark

Truth 0.3 ± 0.1 0.3 ± 0.2 0.6 ± 0.5
EPiC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4

Top
Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

Table 3: Evaluation scores for the JetNet150 dataset. The truth values are a compar-
ison between the test and training set. Lower is better for all scores.

3.4 JetNet150 Results

Having observed competitive results with the EPiC-GAN on the JetNet30 datasets, we now
show results for the more challenging JetNet150 dataset with up to 150 particles. We do not
have a comparison with another generative model, since to our knowledge we are the first to
show a well performing and fast generating model on a jet dataset with such large particle
multiplicity.

The model architecture and training procedure is the same as for the JetNet30 datasets
from Sec. 3.3. In the following, we comparing the EPiC-GAN results for the JetNet150 gluon,
light quark and top datasets to the test dataset using the Wasserstein-1 distance metrics. We
then show the previously discussed nine particle- and jet-level distributions for the JetNet150
top dataset, which is the most challenging of the three datasets.

In Table 3, we compare EPiC-GAN generated events to the JetNet150 truth with the three
Wasserstein-1 distances introduced in Sec. 3.3. As of writing this publication, the FPND evalu-
ation score was not available for the JetNet150 dataset. For both the gluon and the light quark
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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s=1 ↵s, we have

q(xt|x0) = N (xt;
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
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p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):
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q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
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� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t
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x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
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�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:
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where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

��<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �� · · · �� xt ������ xt�1 �� · · · �� x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU=">AAAEoXictVLditNAFE7XqGv92a5eejOYLexKLU0VFKRQ9EYvhCrb3YUklOlk2g6dnzBzYrcb8zK+lU/gazhJK6atuiB4YODM+T/n+8YJZwY6nW+1vRvuzVu39+/U7967/+CgcfjwzKhUEzokiit9McaGcibpEBhwepFoisWY0/Px/G3hP/9MtWFKnsIyoZHAU8kmjGCwplHjeygwzAjThNM4Kz/jSXaZj05zFHIlp5pNZ4C1VgsUkliB2TX/oQLYCpe/4rJwZhJM6NPMJyLPt9IM0SwBA0tOUaVGBs/8/J8mWVRH6eSjhtdpd0pBu4q/VjxnLYPR4d7XMFYkFVQC4diYwO8kEGVYA7P183qYGmr3meMpDawqsaAmykpEctS0lhhNlLZPAiqt1YwMC2OWYmwjiynNtq8w/s4XpDB5FWVMJilQSVaNJilHoFABL4qZpgT40irYntTOisgMa0zAkqC+0QbY/MquIfCcYssbsBH1UNIFUUJgGVePGfhR1qyj1YETXAaH/SqAnp836/lGftUfdNcFiqbBT8L2jouQdvE9iVAoVUyDWONFa5XVYlJSjezEPT+BlmCSiVQgw65or2vBaE0Y5z1e4D/VeBmhstwJyo5C0YeZ53vdo/z19lhVjly71+K6xRb/ZbO/rbLCS8HMwmVZ7W9zeFc567b95+3uxxde/82a3/vOY+eJc+z4zkun77xzBs7QIbUPNVP7Ustdz33vDtxPq9C92jrnkbMhbvAD81mObw==</latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [17] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53]  5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [56] 31.75
NCSN [55] 8.87±0.12 25.32
SNGAN [39] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 ± 0.05 3.26
Ours (L, fixed isotropic ⌃) 7.67±0.13 13.51  3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17  3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal ⌃ 7.28±0.10 23.69
L, fixed isotropic ⌃ 8.06±0.09 13.22
kµ̃ � µ̃✓k2 – –

✏ prediction (ours)

L, learned diagonal ⌃ – –
L, fixed isotropic ⌃ 7.67±0.13 13.51
k✏̃ � ✏✓k2 (Lsimple) 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(✓) := Et,x0,✏

h��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

i
(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring �

2
1 and edge effects. The t > 1 cases correspond to an unweighted version of

Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [55].
(LT does not appear because the forward process variances �t are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Since our simplified objective (14) discards the weighting in Eq. (12), it is a weighted variational
bound that emphasizes different aspects of reconstruction compared to the standard variational
bound [18, 22]. In particular, our diffusion process setup in Section 4 causes the simplified objective
to down-weight loss terms corresponding to small t. These terms train the network to denoise data
with very small amounts of noise, so it is beneficial to down-weight them so that the network can
focus on more difficult denoising tasks at larger t terms. We will see in our experiments that this
reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [53, 55]. We set the forward process variances to constants
increasing linearly from �1 = 10�4 to �T = 0.02. These constants were chosen to be small
relative to data scaled to [�1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) k N (0, I)) ⇡ 10�5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [52,
48] with group normalization throughout [66]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [60]. We use self-attention at
the 16 ⇥ 16 feature map resolution [63, 60]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR10. With our FID score of 3.17, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set, the
score is 5.24, which is still better than many of the training set FID scores in the literature.

5

Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
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1p
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Consistency Model

Speed-up using the CaloClouds Diffusion & Consisteny Models

Sampling from the CaloClouds II Model (Normalizing Flow & Diffusion Model)

Fast & Scalable: Point Cloud Diffusion arXiv:2305.04847 
arXiv:2309.05704

Sampling

Shower 
Flow

PointWise 
NetE

!(0, T2I)

 Ez,i, Nz,i Generated Shower
Calibration

 diffusion 
steps

NtN

Ncal

Energy Flow

Flow 2

Flow 1

Flow 30

Rescaling

E

Shower
Layer-to-Layer Flow Model (L2LFlows) L2LFlows improves cell energy distribution

GeV

GeV

GeV

Geant4 simulation

L2LFlows model

           Fidelity Enhancement: Layer-wise Normalizing Flow
arXiv:2302.11594

Bounded Information Bottleneck Autoencoder (BIB-AE)

Flexible Generation: Energy & Angle Conditioning
arXiv:2303.18150 

Generation of showers with fixed angles and fixed energies

Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].

– 9 –

Fast Geometry-Independent Highly-Granular Calorimeter Simulation 7

Data

Training with mu / sigma

EPiC 
Encoder z

LKLD

PointWise 
Net

Predicted Noise

tE
N

Noise

L(t�1)
di�usion�

�

� �t � 1 � �t+

(a) Training at random time step t

E

Sampling

Shower 
Flow

PointWise 
Net

Noise

Latent 
Flow z

 Esum, Nz,i Generated Shower
Calibration

 diffusion 
steps

TN

Ncal

(b) Sampling with reverse di↵usion through all time steps T

Figure 2: Illustration of the training and sampling procedure of the CaloClouds

architecture. The separate training of the Shower Flow and the Latent Flow is not

shown.

in a conditional point cloud di↵usion model termed PointWise Net.

During sampling, the encoded latent space is generated with a conditional

Latent Flow model. Since this Latent Flow needs to be conditioned on the

incident energy and the number of points, a second Shower Flow is employed

during sampling to generate an appropriate number of points from a requested

incident energy. This way, the only conditional variable for the whole model is

the particle incident energy E. Additionally, the Shower Flow generates the total

visible energy of the calorimeter point cloud Esum as well as the number of points

per layer Nz,i for a post-di↵usion calibration of the generated point cloud.

Fast Geometry-Independent Highly-Granular Calorimeter Simulation 11

Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].

Progress

Close in accuracy to 
fixed grid. 
Fairly slow. 


Can we improve further?



Continuos Diffusion Model

High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −
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2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.
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to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −
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g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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large enough such that p�max pxq « N px;0,�2
maxIq. Song & Ermon (2019) propose to train a Noise

Conditional Score Network (NCSN), denoted by s✓px,�q, with a weighted sum of denoising score
matching (Vincent, 2011) objectives:

✓˚ “ argmin
✓

Nÿ

i“1

�2
i EpdatapxqEp�i px̃|xq

“
ks✓px̃,�iq ´ rx̃ log p�ipx̃ | xqk22

‰
. (1)

Given sufficient data and model capacity, the optimal score-based model s✓˚ px,�q matches
rx log p�pxq almost everywhere for � P t�iuNi“1. For sampling, Song & Ermon (2019) run M steps
of Langevin MCMC to get a sample for each p�ipxq sequentially:

xm
i “ xm´1

i ` ✏is✓˚ pxm´1
i ,�iq ` ?

2✏iz
m
i , m “ 1, 2, ¨ ¨ ¨ ,M, (2)

where ✏i ° 0 is the step size, and zmi is standard normal. The above is repeated for i “ N,N ´
1, ¨ ¨ ¨ , 1 in turn with x0

N „ N px | 0,�2
maxIq and x0

i “ xM
i`1 when i † N . As M Ñ 8 and ✏i Ñ 0

for all i, xM
1 becomes an exact sample from p�min pxq « pdatapxq under some regularity conditions.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Sohl-Dickstein et al. (2015); Ho et al. (2020) consider a sequence of positive noise scales
0 † �1,�2, ¨ ¨ ¨ ,�N † 1. For each training data point x0 „ pdatapxq, a discrete Markov chain
tx0,x1, ¨ ¨ ¨ ,xNu is constructed such that ppxi | xi´1q “ N pxi;

?
1 ´ �ixi´1,�iIq, and therefore

p↵ipxi | x0q “ N pxi;
?
↵ix0, p1 ´ ↵iqIq, where ↵i :“

±i
j“1p1 ´ �jq. Similar to SMLD, we can

denote the perturbed data distribution as p↵ipx̃q :“ ≥
pdatapxqp↵ipx̃ | xqdx. The noise scales are pre-

scribed such that xN is approximately distributed according to N p0, Iq. A variational Markov chain
in the reverse direction is parameterized with p✓pxi´1|xiq “ N pxi´1;

1?
1´�i

pxi`�is✓pxi, iqq,�iIq,
and trained with a re-weighted variant of the evidence lower bound (ELBO):

✓˚ “ argmin
✓

Nÿ

i“1

p1 ´ ↵iqEpdatapxqEp↵i px̃|xqrks✓px̃, iq ´ rx̃ log p↵ipx̃ | xqk22s. (3)

After solving Eq. (3) to get the optimal model s✓˚ px, iq, samples can be generated by starting from
xN „ N p0, Iq and following the estimated reverse Markov chain as below

xi´1 “ 1?
1 ´ �i

pxi ` �is✓˚ pxi, iqq `
a
�izi, i “ N,N ´ 1, ¨ ¨ ¨ , 1. (4)

We call this method ancestral sampling, since it amounts to performing ancestral sampling from
the graphical model

±N
i“1 p✓pxi´1 | xiq. The objective Eq. (3) described here is Lsimple in Ho et al.

(2020), written in a form to expose more similarity to Eq. (1). Like Eq. (1), Eq. (3) is also a weighted
sum of denoising score matching objectives, which implies that the optimal model, s✓˚ px̃, iq, matches
the score of the perturbed data distribution, rx log p↵ipxq. Notably, the weights of the i-th summand
in Eq. (1) and Eq. (3), namely �2

i and p1´↵iq, are related to corresponding perturbation kernels in the
same functional form: �2

i 91{Erkrx log p�ipx̃ | xqk22s and p1 ´ ↵iq91{Erkrx log p↵ipx̃ | xqk22s.

3 SCORE-BASED GENERATIVE MODELING WITH SDES

Perturbing data with multiple noise scales is key to the success of previous methods. We propose to
generalize this idea further to an infinite number of noise scales, such that perturbed data distributions
evolve according to an SDE as the noise intensifies. An overview of our framework is given in Fig. 2.

3.1 PERTURBING DATA WITH SDES

Our goal is to construct a diffusion process txptquTt“0 indexed by a continuous time variable t P r0, T s,
such that xp0q „ p0, for which we have a dataset of i.i.d. samples, and xpT q „ pT , for which we
have a tractable form to generate samples efficiently. In other words, p0 is the data distribution and
pT is the prior distribution. This diffusion process can be modeled as the solution to an Itô SDE:

dx “ fpx, tqdt ` gptqdw, (5)

3
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and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced

4
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Continuos Diffusion Model

High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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Figure 1: Illustration of the training and sampling procedure of the

CaloClouds II model. When sampling with CaloClouds II (CM) only one

denoising step is performed.

of points Nuncal,G4 to the number of cell hits Ncell,G4 of the Geant4 showers

and pgen is a fit of the ratio of number of cell hits Ncell, gen to the (uncalibrated)

number of points Nuncal, gen of a given model. Hence, this polynomial fit pgen is

performed for each model separately. More details on the model components and

the calibrations can be found in Ref [40]. A schematic overview of the training

and sampling procedure is shown in Fig. 1.

In the following Sec. 3.1 we describe the continuous time di↵usion paradigm

implemented in the CaloClouds II model and in Sec. 3.2 we outline its

distillation into a consistency model, referred to as CaloClouds II (CM). Both

models use the same model components outlined above. Details on the training

and sampling hyperparameters are outlined in Sec. 3.3.

3.1. Di↵usion Model

The di↵usion model [34] used in the CaloClouds model is a Denoising Di↵usion

Probabilistic Model (DDPM) with the same discrete time steps during model

training and sampling [37,85]. Since the introduction of DDPM, subsequent works,

i.e. Refs. [38,67,86], have shown that it is advantageous to train a di↵usion model

with continuous time conditioning. This allows for a more flexible sampling regime

for which various SDE and ODE solvers with either a fixed or an adaptive number

of solving steps can be applied.

In the following, we outline the key parts of a di↵usion model based on the

paradigm outlined in Ref. [67]. The training of a di↵usion model starts by di↵using
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Figure 3: Histogram of the cell energies (left), radial shower profile (center), and

longitudinal shower profile (right) for Geant4, CaloClouds, CaloClouds II,

and CaloClouds II (CM). In the cell energy distribution, the region below

0.1 MeV is grayed out (see main text for details). All distributions are calculated

with 40,000 events sampled with a uniform distribution of incident particle energies

between 10 and 90 GeV. The bottom panel provides the ratio to Geant4. Values

outside the range are indicated by small triangles.

4.1. Physics Performance

In this Section, we compare various calorimeter shower distributions from Ref. [40]

between the Geant4 test set and datasets generated using CaloClouds,

CaloClouds II, and CaloClouds II (CM). First, we compare various cell-level

and shower observables calculated from the model generated showers to Geant4

simulations with samples of incident photons with energies uniformly distributed

between 10 and 90 GeV (also referred to as full spectrum). In Fig. 3 we investigate

three representations of the energy distributed in the calorimeter cells, namely

the per-cell energy distribution (left), the radial shower profile (center) and the

longitudinal shower profile (right). The per-cell energy distribution contains the

energy of the cells of all showers in the test dataset. The peak of the distribution at

about 0.2 MeV corresponds to the most probable energy deposition of a minimum

ionising particle (MIP) in the silicon sensor. For downstream analyses a cell energy

cut at half a MIP is applied, since below this threshold the sensor response is

indistinguishable from electronic noise. Hence this cut was applied to all showers

when calculating the shower observables and scores in this section. All models
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Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

JetNet JetClass

2106.11535, 2202.03772
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We introduce the first generative model trained on the JetClass dataset. Our model generates
jets at the constituent level, and it is a permutation-equivariant continuous normalizing flow (CNF)
trained with the flow matching technique. It is conditioned on the jet type, so that a single model can
be used to generate the ten di↵erent jet types of JetClass. For the first time, we also introduce a
generative model that goes beyond the kinematic features of jet constituents. The JetClass dataset
includes more features, such as particle-ID and track impact parameter, and we demonstrate that
our CNF can accurately model all of these additional features as well. Our generative model for
JetClass expands on the versatility of existing jet generation techniques, enhancing their potential
utility in high-energy physics research, and o↵ering a more comprehensive understanding of the
generated jets.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia [1] and Herwig [2] is not
a major computational bottleneck at the LHC [3],
learning the properties of jets from data still has in-
teresting potential applications. For example, gen-
erative modeling at the jet constituent level can be
used to improve the performance of anomaly detec-
tion [4] techniques.

More generally, learning jets is an interesting lab-
oratory for method development. In particular, it
has been fruitful and e↵ective to view the jet con-
stituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [5–14], that combine
di↵erent permutation-invariant layers such as trans-
formers [15] and the EPiC layer [7], with state-
of-the-art generative modeling frameworks such as
di↵usion [16–20] and flow matching [21–24]. Suc-
cessful models developed for jet point clouds can
also potentially be adapted to other important point
cloud generative modeling problems such as for fast
emulation of GEANT4 [25–27] calorimeter show-
ers [11, 13, 28, 29]. Finally, while event generation
with generative models has concentrated primarily
on low multiplicities and fixed structures [30–35], re-
cent, in-principle permutation invariant, approaches
exist as well [36, 37].

So far, e↵orts for jet generation have focused al-
most exclusively on the JetNet dataset of Refs. [38,
39]. Originally generated by [40], this dataset was
subsequently adopted in the works of Ref. [5] as
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

a benchmark dataset for jet generative modeling.
However, the JetNet dataset has a number of draw-
backs that are readily becoming apparent. First, its
limited size (180k jets per jet type) means there are
not enough jets in JetNet to facilitate the train-
ing of state-of-the-art generative models as well as
metrics such as the binary classifier metric [41, 42]
which require additional training data. Second, Jet-
Net uses small-radius (R = 0.4) jets (although the
description in [5] incorrectly states a cone-size of
R = 0.8 which is in disagreement with the observed
angular distribution of constituents). This can lead
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Fig. 2: Model schema of the EPiC Network generator architecture used in both EPiC-JeDi and EPiC-FM. Each multi-layer perceptron (MLP)
is a two-layer neural network with LeakyReLU activation. The pooling operation is a concatenation of both average and summation pooling.

(�⌘, ��, prel
T ), where

�⌘ = ⌘const �⌘jet,

�� = �const ��jet,

prel
T = pconst

T /pjet
T .

The jet four momentum vectors are calculated from the
vector sum of all constituents. All input variables are nor-
malised by their mean and standard deviation in the train-
ing dataset.

Furthermore we examine two scenarios for each
model:

– Unconditional the models are trained on the input
data solely comprising of the jet constituents features
x = (�⌘,��, prel

T ).
– Conditional the models are trained on jet constituents

x conditioned on jet-level features y = (pjet
T , mjet).

These features have been derived from the data
using a normalizing flow paired with a masked
autoregressive architecture.

Substructure observables are calculated from the jet
constituents for the purposes of evaluating the quality

of the generative model. In this work we focus on the
N-subjettiness [84] and energy correlation functions [85]
which are commonly used by the ATLAS and CMS collab-
orations, as well as the recently introduced energy flow
polynomials (EFPs) [86]. To assess the generation perfor-
mance we follow the procedure introduced in Ref. [45] as
well as additional measures studied in Refs. [46, 47]. All
substructure variables are calculated using the relative
pT of the constituents, and are not renormalised by the
inclusive jet pT.

4.3 Evaluation metrics

To assess the generation performance of each model, we
follow the procedure described in Ref. [45] as well as ad-
ditional measures studied in Refs. [46, 47]. However, in-
stead of using the Wasserstein-1 distance between gener-
ated showers and the target distributions we measure the
agreement using the Kullback-Leibler divergence (KLD).

As the Wasserstein-1 distance in one dimension is cal-
culated as the area between the two cumulative distribu-
tion functions, it is very sensitive to overall shifts in distri-
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vector sum of all constituents. All input variables are nor-
malised by their mean and standard deviation in the train-
ing dataset.

Furthermore we examine two scenarios for each
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– Unconditional the models are trained on the input
data solely comprising of the jet constituents features
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T ).
– Conditional the models are trained on jet constituents

x conditioned on jet-level features y = (pjet
T , mjet).

These features have been derived from the data
using a normalizing flow paired with a masked
autoregressive architecture.

Substructure observables are calculated from the jet
constituents for the purposes of evaluating the quality

of the generative model. In this work we focus on the
N-subjettiness [84] and energy correlation functions [85]
which are commonly used by the ATLAS and CMS collab-
orations, as well as the recently introduced energy flow
polynomials (EFPs) [86]. To assess the generation perfor-
mance we follow the procedure introduced in Ref. [45] as
well as additional measures studied in Refs. [46, 47]. All
substructure variables are calculated using the relative
pT of the constituents, and are not renormalised by the
inclusive jet pT.

4.3 Evaluation metrics

To assess the generation performance of each model, we
follow the procedure described in Ref. [45] as well as ad-
ditional measures studied in Refs. [46, 47]. However, in-
stead of using the Wasserstein-1 distance between gener-
ated showers and the target distributions we measure the
agreement using the Kullback-Leibler divergence (KLD).

As the Wasserstein-1 distance in one dimension is cal-
culated as the area between the two cumulative distribu-
tion functions, it is very sensitive to overall shifts in distri-
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FIG. 4: Average fraction of jet constituents of di↵erent particle types. For each jet type, the intervals show
the mean value over all evaluated jets with up and down variations of one standard deviation. The dotted
lines show the values obtained for real jets from the JetClass dataset and the solid lines show the values
obtained for the generated jets.

While particles in t ! bqq
0 jets have on average a

larger ⌘rel and thus have an overall wider ⌘rel distri-
bution, q/g jets are more collimated, resulting in a
sharper ⌘

rel peak around ⌘
rel = 0. Concerning the

p
rel
T distribution, t ! bqq

0 jets are expected to show a
smaller tail towards larger prelT values, since t ! bqq

0

jets contain on average more constituents and thus
the jet pT is distributed over more particles, leading
to smaller p

rel
T values. The generated distributions

of all three kinematic features agree very well with
the corresponding distribution from the JetClass
dataset, showing that our model is capable of gener-
ating jets of very di↵erent kinematic properties. This
is also confirmed by the KL divergence values listed
in Table II, which only have a small deviation from
the truth values.

A comparison of the trajectory displacement mod-
eling is shown in Figure 3 for H ! bb̄, H ! cc̄

and H ! gg jets. Due to the long lifetime of b-
and c-hadrons, the trajectory displacement of jet
constituents associated with those hadrons is ex-
pected to be on average larger than for other jet
constituents. Thus, the trajectory displacement dis-
tributions of H ! bb̄ and H ! cc̄ jets are expected
to be wider than the trajectory displacement distri-
bution of H ! gg jets. Since the trajectory displace-
ment is by definition zero for neutral particles in the
JetClass dataset, only charged particles are con-
sidered in the histograms in Figure 3. For all three
jet types, the histograms of the generated jets agree
very well with the histograms of the real jets, show-
ing that our model is capable of correctly modeling

the trajectory displacement of the jet constituents.
Notably, our model is able to catch the essential dif-
ferences between the trajectory displacement distri-
butions of H ! bb̄, H ! cc̄ and H ! gg jets, which
is an important feature from the physics point of
view. However, as seen both in the ratio panels in
Figure 3 and in the corresponding KL divergence val-
ues in Table II, the agreement between the target
distribution and the distribution obtained from the
generated jets is worse for the impact parameter fea-
tures than for the kinematic features, showing that
the modeling of these distributions is more challeng-
ing. This could be further optimized in future work
by choosing a di↵erent preprocessing for the impact
parameter features, by e.g. transforming them using
the hyperbolic tangent function, which would remove
the large tails of the distributions.

The evaluation of the particle-ID modeling is
shown in Figure 4, where we show the average frac-
tion of jet constituents of di↵erent particle types for
all ten jet types. For each jet type, the intervals show
the mean value over all evaluated jets with up and
down variation of one standard deviation. The agree-
ment between the generated jets and the real jets is
very good for all jet types, showing that on average
the generated jets contain the same fraction of di↵er-
ent particle types as the real jets. The modeling of
the electric charge also shows very good agreement,
which is shown in the Appendix in Section A.
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FIG. 5: Jet mass (a) and subjettiness ratios ⌧32 (b) and ⌧21 (c) for all ten jet types. The histograms in
dotted lines show the distributions obtained from the JetClass dataset (i.e. real jets) and the solid lines
show the histograms obtained from the generated jets. Jets from the categories H ! bb̄, H ! cc̄ and H ! gg

are grouped into one joint histogram for better readability, since the individual histograms show very similar
shapes.

B. Jet substructure modeling

The jet mass mjet and the two subjettiness ra-
tios ⌧32 and ⌧21 are shown in Figure 5 for the dif-
ferent jet types. The real jets are shown in dotted
lines while the generated jets are shown in solid lines.
Both the jet mass and the subjettiness ratio distri-
butions show very good agreement for all jet types.
The largest deviations between the target distribu-
tion and the distribution of the generated jets are
seen for t ! bqq

0 and H ! `⌫qq
0, where the distri-

bution of the generated jets peaks at a larger value
of ⌧32. This mismodeling also shows in the values
of the KL divergence which are listed in Table III
for some of the jet-level observables. Further stud-

ies were done to determine whether narrowing down
our model’s features to just kinematics and whether
training solely on t ! bqq

0 jets enhances the model-
ing of the t ! bqq

0 substructure, which can be found
in the Appendix in Section C.

C. Classifier test

In addition to the evaluation presented in the
previous subsections, we also investigate the per-
formance of our model with the classifier test pro-
posed in Ref. [41]. Thus, a binary classifier is trained
to distinguish between real jets from the JetClass
dataset and fake jets that were generated with our
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In addition to the evaluation presented in the
previous subsections, we also investigate the per-
formance of our model with the classifier test pro-
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
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Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Train a classifier between 
prediction vs data

Actual dataGenerative  
model output

Application: CATHODE

GK, Nachmann, Shih et al 2101.08320; Hallin, .., GK et al 2109.00546;



Buhmann, .., GK, Mikuni, et al  2310.06897;


Using all low-level features 
in-principle includes all 
properties

Made possible by recent 
progress in point cloud 
generative models 
(see Vinny’s talk for more details)


(Classifier is a transformer)

Application: CATHODE
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Shower Dataset
Charged pion showers
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Pion showers significantly more complex

Photon showers 
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Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Advancing Generative Modelling of Calorimeter Showers 
on Three Frontiers

Erik Buhmann , Sascha Diefenbacher , Engin Eren , Frank Gaede , Gregor Kasieczka , William Korcari , Anatolii Korol , Claudius Krause , 
Katja Krüger , Peter McKeown , Imahn Shekhzadeh , and David Shih

1 2 3 3 1 1 3 4
3 3 5 6

✉  erik.buhmann@uni-hamburg.de

Universität Hamburg | Lawrence Berkeley National Laboratory | Deutsches Elektronensynchotron (DESY) | Universität Wien | Université de Genève | Rutgers University1 2 3 4 5 6

We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Consistency Model

Speed-up using the CaloClouds Diffusion & Consisteny Models

Sampling from the CaloClouds II Model (Normalizing Flow & Diffusion Model)

Fast & Scalable: Point Cloud Diffusion arXiv:2305.04847 
arXiv:2309.05704
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           Fidelity Enhancement: Layer-wise Normalizing Flow
arXiv:2302.11594

Bounded Information Bottleneck Autoencoder (BIB-AE)

Flexible Generation: Energy & Angle Conditioning
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Generation of showers with fixed angles and fixed energies

Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].

Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation 20

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as

Generative progress

Closing
Better generativer architectures steadily 
improve simulation of particle showers


Better scaling for large detectors via point 
cloud approach:


Can also use for learning jet constituents 
directly (c.f. “ML at HEP” anomaly talk)


Next big challenge: 
Scaling and integration

Thank you!

3 datasets of increasing complexity: 
DS1: Up to 533 voxels (ATLAS)

DS2: 6480 voxels

DS3: 40500 voxels
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Statistics
If we train a generator on N data points, and use it to produce M>>N 
examples, what is the statistical power of the M points?


Compare (known) truth distribution to sample and oversampled data from 
GAN
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The
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2 One-dimensional camel back

The first function we study is a one-dimensional camel back, made out of two normalized
Gaussians Nµ,�(x) with mean µ and width �,

P (x) =
N�4,1(x) +N4,1(x)

2
. (1)

We show this function in Fig. 1, together with a histogrammed data set of 100 points. We
choose this small training sample to illustrate the potentially dramatic improvement from a
generative network especially for an increasing number of dimensions. As a benchmark we
define a 5-parameter maximum-likelihood fit, where we assume that we know the functional
form and determine the two means, the two widths and the relative height of the Gaussians in
Eq. (1). We perform this fit using the iminuit [46] and probfit [47] Python packages. The
correctly assumed functional form is much more than we can encode in a generative network
architecture, so the network will not outperform the precision of this fit benchmark. On the
other hand, the fit illustrates an optimal case, where in practice we usually do not know the
true functional form.

To quantify the agreement for instance between the data sample or the fit on the one hand
and the exact form on the other, we introduce 10, 20, or 50 quantiles. We illustrate the case
of 10 quantiles also in Fig.1. We can evaluate the quality of an approximation to the true
curve by computing the average quantile error

MSE =
1

Nquant

NquantX

j=1

✓
xj �

1

Nquant

◆2

, (2)

where xj is the estimated probability in each of the Nquant quantiles, which are defined with
known boundaries. In a first step, we use this MSE to compare

1. low-statistics training sample vs true distribution;

2. fit result vs true distribution.

In Fig. 2 the horizontal lines show this measure for histograms with 100 to 1000 sampled
points and for the fit to 100 points. For the 100-point sample we construct an error band by
evaluating 100 statistically independent samples and computing its standard deviation. For
the fit we do the same, i.e. fit the same 100 independent samples and compute the standard
deviation for the fit output. This should be equivalent to the one-sigma range of the five
fitted parameters folded with the per-sample statistics, if we take into account all correlations.
However, we use the same procedure to evaluate the uncertainty on the fit, as is used for the
other methods.

The first observation in Fig. 2 is that the agreement between the sample or the fit and
the truth generally improves with more quantiles, indicated by decreasing values of the quan-
tile MSE on the y-axis. which is simply a property of the definition of our quantile MSE error
above. Second, the precision of the fit corresponds to roughly 300 hypothetical data points
for 10 quantiles, 500 hypothetical data points for 20 quantiles, and close to 1000 hypothetical
data points for 50 quantiles. This means that for high resolution and an extremely sparsely

4
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Figure 5: Relative deviation of the training sample (left) and the GANned events (right) for
the 2D Gaussian ring. We show the same 7⇥ 7 2D-quantiles as in Fig. 4,

separately, remembering that the network is trained on Cartesian coordinates. In our setup
the GAN learns the peaked structure of the radius, with an amplification factor around four,
much better than the flat distribution in the angle, with an amplification factor below two.
Both of these amplification factors are computed for ten quantiles, to be compared with the
1D-result in Fig. 2. We can combine the two dimensions and define 7⇥ 7 quantiles, to ensure
that the expected number of points per quantile remains above one. The 2D amplification
factor then comes out slightly above three, marginally worse than the 50 1D-quantiles shown
in Fig. 2. One could speculate that for our simple GAN the amplification factor is fairly
independent of the dimensionality of the phase space.

We illustrate the 49 2D-quantiles in Fig. 5, where the color code indicates the relative
deviation from the expected, homogeneous number of 100/49 events per quantile. We see the
e↵ect of the GAN improvement with more subtle colors in the right panel. While it is hard
to see the quality of the GAN in radial direction, we observe a shortcoming in the azimuthal
angle direction, as expected from Fig. 4. We also observe the largest improvement from the
GAN in the densely populated regions (as opposed to the outside) which agrees with the
network learning to interpolate.

4 Multi-dimensional spherical shell

To see the e↵ect of a higher-dimensional phase space we further increase the number of
dimensions to five and change the Gaussian ring into a spherical shell with uniform angular
density and a Gaussian radial profile

P (r) = N4,1(r) +N�4,1(r)

(4)

with radius r � 0 and angles '1,..,4.

Even if we limit ourselves to the hard scattering, around ten phase space dimensions is
typical for LHC processes we would like to GAN [19]. In typical LHC applications, the number

8
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Test the statistical properties of 
simplified calorimeter showers.
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quantile values

DJS(g, p) =
1
2

X

Qi2Q

Ç
gi log

gi
1
2(gi + pi)

+ pi log
pi

1
2(gi + pi)

å
. (5)

Just like the DJS, this estimate lies between zero and log 2. It turns into the continuous DJS
between the histogram estimators

g(x) =
X

Qi2Q

gi

vol(Qi)
1Qi
(x) =
X

Qi2Q

#{x 0 2Qi | x 0 2 G}
#G · vol(Qi)

1Qi
(x)

and p(x) =
X

Qi2Q

pi

vol(Qi)
1Qi
(x) ,

(6)

with vol the n-dimensional volume, 1Qi
the indicator function of the i-th quantile and G all

showers in either an evaluation set of GEANT4 samples or in the generated set. As for all
histogram estimators, independent of the choice of bin edges, the overall number of bins, the
cardinality of the fitted set, as well as the number of showers per bin have to go to infinity
for the estimator to converge to the underlying distribution. As DJS goes to zero, the two
distributions g and p are identical.

To determine the quality of our generative model relative to truth or validation distribu-
tions, we look at the dependence of the Jensen–Shannon divergence DJS on the number of
quantiles nquant we can reliably construct. This will allow us to gauge where the density es-
timation underlying the VAE-GAN beats the statistically limited training data. As discussed
earlier, we estimate the uncertainty on DJS for the 5k and 10k evaluation sets of GEANT4 data
from five independent sets each.

4 16 64 256 1k 4k 16k
nquant

10�1

10�2

10�3

10�4

10�5

1k 5k

10k 50k

1k�1000k

218k validation
showers

DJS

Evis

Geant4

VAE-GAN

Figure 6: Dependence of DJS on the number of quantiles nquant for different amounts
of GEANT4 data (orange) and VAE-GAN data (blue) for the observables given in
Eq.(2). Solid lines indicate meaningful, non-sparse quantile sets. The 1k GEANT4
samples were also used to train the VAE-GAN. Errors are calculated as the standard
deviation from five datasets. For 50k we omit the negligible errors.
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Figure 4: Differential distributions for the observables given in Eq.(2) from GEANT4
and from the VAE-GAN-generated images. Errors of the validation set (grey) and the
training set (orange) correspond to the Poisson-error per bin, while the uncertainty
on the VAE-GAN line (blue) is illustrated by the standard deviation of three indepen-
dent trainings on the 1k training data. All histograms are normalized, such that all
bins add up to one. The insets show the ratio to the high-statistics estimate of the
truth distribution.

and our VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of
distributions for 1k shower images used for a single VAE-GAN training and 1000k showers
from the corresponding generative network. They are compared to the validation set of 218k
GEANT4 showers. In addition to the continuous distributions we also show the number of
active pixels per image. First, we see that statistical fluctuations of the training set propagate
into under- and over-densities of the learned distributions. One prominent difference is the
number of active pixels, which can be attributed to the under-estimation of the number of low
energy hits below 5 MeV. The remaining learned distributions are smoother and show fewer
fluctuations than the training data. For the visible per-pixel energy, the VAE-GAN interpolates
into the sparsely populated interval between around 2 and 120 MeV even though the training
set does not include a single pixel in this range. Previous work has shown [30] how to correct
the low-energy behavior through an additional, consecutively trained post-processing network,
using an maximum mean discrepancy loss [18,57] on the pixel energy spectrum. Here we skip
this post-processing and instead focus on the statistical properties of the generated data for
visible pixel energies above 5 MeV.

Quantiles

We now turn to quantifying the efficacy of the VAE-GAN, given the strong performance shown
in Fig. 4. Like in Sec. 2, we could use standard histograms with bins of equal size. However,
in this case the occupation number of the bins strongly depend on the assumed support of the
distributions and on the binning. To avoid zero bins and sparse distributions we have to define
the ranges and binnings by hand, making this strategy inconsistent in evaluation. Instead,
we now split the support of the distributions into bins of equal probability weight, so-called
quantiles, forming the set Q. We generate the quantiles for a given distribution by iteratively

6
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Figure 1: Illustrated transformation of the original calorimeter images from left to
right. All histograms feature a logarithmic color coding, with an equal scaling for the
10 ⇥ 10 images. The final step of cutting below half the MIP energy is applied for
evaluation only.

method can be applied to gauge the merit of a generative surrogates whenever the underlying
distribution can be accessed either through a large number of samples or analytically. We
expect similar results in all cases where the smoothness assumption on the underlying density
distribution is valid.

The paper is organized as follows. In Sec. 2, we start by introducing our data set and the
established generative Variational Autoencoder-GAN (VAE-GAN) architecture adapted to this
simulation [30]. Next, we describe our treatment of the comparison between generated and
truth samples and the relevant observables in Sec. 3. We then present the amplification effects
of the generative networks in Sec. 4. This comparison includes an estimate of the effective
sample size to the information encoded and a comparison to standard density estimators. In
Sec. 5, we briefly summarize our promising findings.

2 Dataset and model

The International Large Detector (ILD) [44] is one of two detector concepts proposed for the In-
ternational Linear Collider (ILC). It is optimized towards the Particle Flow analysis concept for
optimal global event reconstruction [45,46]. It combines high-precision tracking and vertex-
ing capabilities with very good hermiticity and highly-granular electromagnetic and hadronic
calorimeters (ECal/HCal). We choose one of its two proposed electromagnetic calorimeters,
the Si-W ECal, for our dataset. It consists of 30 active silicon layers in a tungsten absorber
stack with 20 layers of 2.1 mm and 10 layers of 4.2 mm thickness. The silicon sensors have a
cell size of 5⇥ 5 mm2.

ILD uses iLCSoft [47] for detector simulation, reconstruction, and analysis. The GEANT4 [48]

Figure 2: Illustration of the VAE-GAN architecture. The encoder and decoder form
a VAE setup, while the decoder can also be understood as a GAN generator. The
discriminator acts as a binary classifier, as in a classical GAN.

3

Scaling of 
difference to 
ground truth with 
resolution again 
better for the 
generative model.
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